

6TiSCH Interoperability Test Description

1. Scope

This document forms the guidelines to lead the technical organization of the 2nd ETSI 6TiSCH Plugtests event, held in Paris, France, on 2-4 February 2016. This document is intended to be updated for future interoperability events.

This document describes:

- The testbed architecture, showing which IETF 6TiSCH systems and components are involved, and how they inter-work in the interoperation focus.
- The configurations used during test sessions, including the relevant parameter values of the different layers (IEEE802.15.4e TSCH, 6TiSCH, 6LoWPAN, RPL).
- The interoperability test descriptions, describing the scenarios the participants follow to perform the tests.
- Guidelines on how to use the tools provided:
 - the *golden device*, a pre-programmed physical device to test an implementation against
 - $\circ\,$ a modified version of Wireshark, a packet analyzer, which includes the necessary dissectors

2. References

Referenced documents, which are not publicly available at the expected location can be found at <u>http://docbox.etsi.org/Reference</u>.

<u>NOTE</u>: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long-term validity.

2.1 Normative references

The following referenced documents are necessary for the application of the present document.

[1] IEEE standard for Information Technology, "IEEE std. 802.15.4e, Part. 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer", April 2012.

[2] X. Vilajosana, K. Pister. "*Minimal 6TiSCH Configuration*", IETF 6TiSCH Working Group, draft-ietf-6tisch-minimal-14, January 2015.

[3] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, JP. Vasseur, and R. Alexander, "*RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks*", RFC 6550, March 2012.

[4] P. Thubert, "Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL)", RFC6552, March 2012.

[5] J. Hui, and JP Vasseur, "The Routing Protocol for Low-Power and Lossy Networks (RPL) Option for Carrying RPL Information in Data-Plane Datagrams", RFC6553, March 2012.

[6] J. Hui, JP. Vasseur, D. Culler, and V. Manral, "An IPv6 Routing Header for Source Routes with the Routing Protocol for Low-Power and Lossy Networks (RPL)", RFC6554, March 2012.

[7] N. Kushalnagar, G. Montenegro, and C. Schumacher, "IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals", RFC4919, August 2007.

[8] Qin Wang, Xavier Vilajosana. "6TiSCH Operation Sublayer (6top)". draft-wang-6tisch-6topsublayer-04. Nov 2015.

[9] P. Thubert, C. Bormann, L. Toutain, "6LoWPAN Routing Header And Paging Dispatches", draft-ietf-6lo-routing-dispatch-02, Jan 2016.

2.1 Informative references

[10] P. Thubert, "An Architecture for IPv6 over Time Slotted Channel Hopping", IETF 6TiSCH Working Group, draft-ietf-6tisch-architecture-09, Nov. 2015.

[11] T. Watteyne, M. R. Palattella, L. A. Grieco, "Using IEEE802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement", RFC7554, May 2015.

[12] M. R. Palattella, P. Thubert, T. Watteyne, Q. Wang, "*Terminology in IPv6 over Time Slotted Channel Hopping*", IETF 6TiSCH Working Group, draft-ietf-6tisch-terminology-06, Nov. 2015.

[13] ETSI EG 202 237 V1.1.2 (2007-04). ETSI Guide. Methods for Testing and Specification (MTS), Internet Protocol Testing (IPT), Generic approach to interoperability testing.

[14] ETSI EG 202 568 V1.1.3 (2007-04). ETSI Guide. Methods for Testing and Specification (MTS);. Internet Protocol Testing (IPT);. Testing: Methodology and Framework.

Rev. 2.4 – 6TiSCH Interoperability Test Descriptions

3. Abbreviations

For the purposes of the present document, the following abbreviations apply:

6P:	6top Protocol
6LoRH:	6lo Routing Header
ACK:	Acknowledgement packet
DAO:	RPL Destination Advertisement Object
DIO:	RPL DAG Information Object
DAG:	Directed Acyclic Graph
DODAG:	Destination Oriented DAG
EB:	Enhanced Beacon packet
GD:	Golden Device
GD/root:	Golden Device acting as DAGroot
GD/sniffer:	Golden Device acting as PS
GPIO:	General-Purpose Input/Output
KA:	Keep-Alive message
LA:	Logic Analyzer
NUT:	Node Under Test
OSC:	Oscilloscope
PS:	Packet Sniffer
RPI:	RPL Information Option
SUT:	System Under Test
SYN:	Synchronization
TD:	Test Description

Equipment Type:

DAGroot (DR): A DAGroot is a 6TiSCH Node acting as root of the DAG in the 6TiSCH network topology.

6TiSCH Node (6N): A 6TiSCH Node is any node within a 6TiSCH network other than the DAGroot. It can act as parent and/or child node within the DAG. It can communicate with its children and its parent using the 6TiSCH minimal schedule, or any other TSCH schedule. In the test description, the term is used to refer to a non-DAGroot node.

4. Conventions

4.1 Interoperability test process

4.1.1 Introduction

According to well-established test methodology, such as ETSI EG 202 237 [13] and ETSI EG 202 568 [14], it is possible to distinguish two different and complementary ways for testing devices which implement a given standard: Conformance and Interoperability testing.

Conformance Testing aims at checking whether a product correctly implements a particular standardized protocol. Thus, it **establishes whether or not the protocol Implementation Under Test (IUT) meets the requirements specified for the protocol itself**. For example, it will test protocol *message contents and format* as well as the *permitted sequences of messages*.

Interoperability Testing aims at checking whether a product works with other similar products. Thus, it proves that end-to-end functionality between (at least) two devices (from different vendors) is, as required by the standard(s) on which those devices are based.

Conformance testing in conjunction with interoperability testing provides both the proof of conformance and the guarantee of interoperation. ETSI EG 202 237 [13] and ETSI EG 202 568 [14] describe several approaches on how to combine these two methods. The most common approach consists in **Interoperability Testing with Conformance Checks**, where reference points between the devices under test are monitored to verify the appropriate sequence and contents of protocol messages, API calls, interface operations, etc. This will be the approach used by the 6TiSCH Plugtests.

The test session will be mainly executed between two devices from different vendors. For some test descriptions, it may be necessary to have more than two devices involved. The information about the test configuration, like the number of devices or the roles required are indicated in Section 6.

4.1.2 The test description proforma

The test descriptions are provided in proforma tables, which include the different steps of the Test Sequence. The steps can be of different types, depending on their purpose:

- A **stimulus** corresponds to an event that triggers a specific protocol action on a NUT, such as sending a message.
- A **configure** corresponds to an action to modify the NUT or SUT configuration.
- An **IOP check** (IOP stands for "Interoperation") consists of observing that one NUT behaves as described in the standard: i.e. resource creation, update, deletion, etc. For each IOP check in the Test Sequence, a result can be recorded.
- The overall IOP Verdict will be considered "PASS" if and only if all the IOP checks in the sequence are "PASS".

In the context of **Interoperability Testing with Conformance Checks**, an additional step type, **CON checks** (CON stands for "Conformance") can be used to verify the appropriate sequence and contents of protocol messages, API calls, interface operations, etc.

In this case, the **IOP Verdict will be PASS if <u>all</u> the IOP checks are PASS**, and **CON Verdict will be PASS if <u>all</u> the CON checks are PASS. The IOP/CON Verdict will be FAIL if at least one of**

the IOP/CON checks is FAIL.

Every IOP check and CON check of a test description should be performed using a trace created by a monitor tool, as described in Section 4.2.

4.2 Tooling

Participant shall use their own tools for logging and analyzing messages for the "check" purpose. The monitor tools include:

The following tools are REQUIRED for executing the tests.

Packet Sniffer: An IEEE802.15.4 compliant Packet Sniffer (PS) and the relevant tools to be able to analyze packets exchanges over the air.

<u>Note</u>: The Plugtests organizers provide the participants with a "Golden Device" which can act as a packet sniffer device. Participant are free, however, to use their own PS.

Dissector: A computer program capable of interpreting the frames captured by the packet sniffer, and verify the correct formatting of the different headers inside that frame.

<u>Note</u>: The Plugtests organizers provide the participants with a custom-built version of Wireshark, a popular packet analysis software, which contains the necessary dissectors. Participant are free, however, to use their own dissector(s).

The following tools are OPTIONAL to execute the tests.

Logic Analyzer or Oscilloscope: A Logic Analyzer (LA) to display the state of a GPIO (a pin on a board). It must offer tools to convert the captured data into timing diagrams.

Debug Pins (GPIOs): To the scope of the tests, at least 2 programmable Digital I/O pins are recommended. One of the Debug pins should be used to track the slotted activity, and thus, be toggled at the beginning of each timeslot. The other debug pin should be toggled every time an action as defined by the timeslot template happens, i.e., the debug pin will toggle at tsTxOffset, tsRxAckDelay, etc.

Antenna Attenuators: The attenuators (which can be of different type: SMA, MMCX, u.FL) will be used to simulate distance between nodes. By doing so, multi-hop topologies can be constructed without the need of physically separating nodes. An attenuator can connect two motes using a *pigtail* (little wire) with the corresponding antenna connector (e.g, SMA, MMCX, u.FL, etc). Several attenuators (10 dB, 20 dB, 30 dB, etc.) will be used. It is also preferable that they can be connected in a *daisy chain*.

4.3 Test Description naming convention

All the tests described in this document, which will be performed during the PlugTests, can be classified in different groups, based on the type of features they verify. There are 4 different groups of tests: Synchronization (SYN), RPL features (RPL), 6top protocol (6P) and 6LoWPAN dispatch for routing headers (6LoRH).

For each group, several tests are performed.

To identify each test, this TD uses a Test ID following the following naming convention: TD_6TiSCH_<test group>_<test number within the group>

4.4 6TiSCH Tests Summary

Test	Test ID	Test Summary	Test Group
Number			
1	TD_6TiSCH_SYN_01	Check that a 6N can synchronize to the EB sent by the DR and join the network.	SYN
2	TD_6TiSCH_SYN_02	Check that a 6N can synchronize to the EB sent by the DR and join the network when the timeslot IE does not contain the default 10ms timeslot template.	SYN
3	TD_6TiSCH_RPL_01	Check the value of the join priority field in the EB sent by a child 6N and a parent DR.	RPL
4	TD_6TiSCH_RPL_02	Check that the 6N computes its rank correctly according to draft-ietf- 6tisch-minimal-14.	RPL
5	TD_6TiSCH_6P_01	Check that a 6N can ADD a cell in the schedule according to draft-wang- 6tisch-6top-sublayer-04	6P
6	TD_6TiSCH_6P_02	Check that a 6N can COUNT the cells allocated in the schedule to a given neighbor, according to draft-wang- 6tisch-6top-sublayer-04.	6P
7	TD_6TiSCH_6P_03	Check that a 6N can obtain the LIST of cells in the schedule, according to draft-wang-6tisch-6top-sublayer-04.	6P
8	TD_6TiSCH_6P_04	Check that a 6N can CLEAR the schedule of a node, according to draft- wang-6tisch-6top-sublayer-04.	6P
9	TD_6TiSCH_6P_05	Check that a 6N can DELETE a cell in the schedule according to draft- wang-6tisch-6top-sublayer-04.	6P
10	TD_6TiSCH_6P_06	Check the correct implementation of the 6P timeout (after a 6P request is received), according to draft-wang- 6tisch-6top-sublayer-04.	6P
11	TD_6TiSCH_6LoRH_01	Check that the source routing header is correctly encoded as a 6LoRH Critical RH3, according to draft-ietf- 6lo-routing-dispatch-02	6LoRH
12	TD_6TiSCH_6LoRH_02	Check that, when the packet's sent towards the DR, the RPL Information Option is correctly encoded as a	6LoRH

		6LoRH RPI, according to draft-ietf- 6lo-routing-dispatch-02	
13	TD_6TiSCH_6LoRH_03	Check that, when the packet's travel inside the RPL domain, the IP in IP 6LoRH will not be presented in the packet.	6LoRH
14	TD_6TiSCH_6LoRH_04	Check that, when the packet travel outside a RPL domain, Ip in IP 6LoRH is present in the packet.	6LoRH

Table 1. 6TiSCH tests

5. 6TiSCH Test Configurations

5.1 Node Under Test (NUT)

In the context of 6TiSCH, and according to draft-ietf-6tisch-minimal [2], a Node Under Test is a low-power wireless node equipped with a IEEE802.15.4-compliant radio, and implementing <u>at least</u>:

- the IEEE802.15.4e TSCH MAC protocol [1]
- the RPL routing protocol [3]
- the 6LoWPAN adaptation layer [7].

In the scope of this Test Description, a NUT also implements:

- draft-wang-6tisch-6top-sublayer-04 [8]
- draft-ietf-6lo-routing-dispatch-02 [9]
- the UDP protocol

When executing this Test Description, the relevant parameter values of the protocols adopted at different layers (IEEE802.15.4e TSCH and RPL) are set according to [2],[8] and [9]. Those not defined in [2], [8] and [9] are specified in this TD.

Additionally, the NUT also required to implement specific functions not being defined in the draft or standard but necessary for conducting the tests. In the scope of this Test Description, a NUT also implements

- a way to issue a 6P Request.
- a way to disable and enable 6P Response.

The issuing of 6P Request can be either triggered by a button pressing event or by serial command input. There is no specific requirement for how to implement this function as long as the node support that. The disabling and enabling 6P Response functions are required when conducting the timeout test (TD_6TiSCH_6P_06). "Disable the 6P Response" means the node do not send response even it's available to send. This makes node stuck at the current 6P transaction. Then "Enable the 6P Response"s operation makes the node back to normal. However, the node only able to send the response after TIMEOUT.

5.2 System Under Test (SUT)

The System Under Test (SUT) is composed of a number of Nodes Under Test (NUTs), possibly implemented by different vendors. To address different functional areas and groups of tests, the following SUT scenario have been defined.

Rev. 2.4 – 6TiSCH Interoperability Test Descriptions

5.2.1 Single-hop scenario

For most tests, the SUT is a 6TiSCH single-hop topology, including a DAGroot and a 6TiSCH Node. For conformance tests, the DR is the golden device (GD/root). For interoperability tests, the DR is implemented by the vendor.

In some tests, in order to verify the correct formatting of the frames exchanged between the DR and the 6N, a packet sniffer is also needed.

Figure 1 Ssingle-hop scenario

5.2.2 Multi-hop scenario

The multi-hop scenario includes 1 DR and 3 6Ns, forming a linear topology as displayed in Fig. 2. This topology is used for testing 6LoRH features. The DR is either a GD/root or a vendor node. For some tests, another GD/sniffer or a vendor PS is used for capturing the frames exchanged.

Figure 2 Multi-hop scenario

5.2.3 Star scenario

The star scenario includes 1 DR and 2 6Ns, both directly connected to the DR, as displayed in Fig. 3. For some tests, another GD/sniffer or a vendor PS is used for capturing the frames exchanged.

Figure 3 Star scenario

5.3 Golden Device

This section describes the two images which run on the Golden Device to perform the different tests listed in Section 6. With the first image, the GD acts as DAGroot (GD/root). With the second image, the GD acts as packet sniffer (GD/sniffer). All images can be configured using a script (described in Section 5.3.4), which allows setting the value of several parameters (e.g., frequency, slotframe size, etc.), or triggering the transmission of a given type of packet (EB, DATA, ACK, etc.). The commands which allow configuring the images are presented in Section 5.3.3; the specific set of parameters to be used for each test are specified in Section 6.

5.3.1 GD/root

With this first image, the golden device is a DAGroot. By using the script, it is possible to configure:

- the number of frequencies (Single frequency or Multiple Frequencies/Channel Hopping)
- the slotframe size
- the type of packet to send/receive (EB, KA, DATA, ACK, DIO, DAO)
- the value of the DAGrank.

The script displays information about the frames the GD/root received from the vendor node. For example, following the reception of a KA message, the GD/root prints out the information about the ASN the KA was received in, and the Time Offset of the vendor node.

The script can also cause GD/root to issue 6P packets (6P_ADD, 6P_DELETE, 6P_COUNT, 6P_LIST, 6P_CLEAR). The GD/root also returns information about the 6P response (e.g. the number of reserved cells in a 6P_COUNT response, the reserved cell list in 6P_LIST response). The value of the return code field in the 6P response is always printed. The script also allows the user to specify up to 3 slots to be included in the 6P_ADD or 6P_DELETE packets (random slots are used when the user does not specify any).

Details about when/how to use the GD/root in the tests are provided in Section 6.

5.3.2 GD/sniffer

With this second image, the golden device acts as a packet sniffer. The script allows the user to configure the frequency the GD/sniffer is listening on. The packet sniffer can forward the received frames to the dissector.

The GD/sniffer is mainly used for conformance tests to verify packet formats and the values of specific fields, as detailed in the different tests.

5.3.3 Configuring Script

A Python configuration script allows the user to configure the golden device. The script sends command to the GD over its serial port. Table 2 shows the format of Generic serial packet.

Length (bytes)	1	1	Variable
Script Command Content	Version	ImageID	Command Content

Table 2. Generic serial packet format

Version: the first field of the command (1 byte long) indicates the version of script. The command is valid only when its version matches the one supported by the GD image. Otherwise, the command is discarded by the GD.

ImageID: the second field of the command (1 byte long) indicates the ImageID. When it is set to 1, the GD will run GD/root, when it is set to 2, it will run GD/sniffer. If the value of ImageID in the command sent to the GD is different from the two allowed values (1 and 2), the command is discarded by the GD.

Command Content: this field (variable length) is composed by three different fields, as specified in Table 3

Length (bytes)	1	1	Variable
Command Content	CommandID	length	(value of) Parameter

Table 3. Format of Command Content

CommandID: this field (1 byte long), together with ImageID allows identifying the specific command used for configuring the GD.

Length: this field (1 byte long) specifies the length of the next field, i.e., of the parameter content.

(*value of*) *Parameter*: this field contains the value of the specific parameter configured by using that command. Table 4 summarizes the list of parameters which can be configured, using different commands (identified by different CommandID).

Command Scope	Command ID	length	Parameter	Allowed Range of Value	Unit
Send EB	0	2 bytes	Sending period	0~65535	second
Configure Frequency	1	1 byte	Frequency number	(0,11~26, when frequency number is set to 0, channel hopping is enabled)	
Send KA	2	2 bytes	Sending period	0~65535	millisecond
Send DIO	3	2 bytes	Sending period	0~65535	millisecond
Send DAO	4	2 bytes	Sending period	0~65535	millisecond
Set Rank Value	5	2 bytes	Rank	0~65535	
Enable/Disable Security	6	1 byte	Option	True(enable) False(disable)	
Set Slotframe Size	7	2 bytes	Slotframe length	0~65535	
Enable/Disable ACK Transmission	8	1 byte	Option	True(enable) False(disable)	
Issue a 6P ADD Packet	9	Multiple bytes (0 to 3)	Candidate cell List	0~slotframeLen gth-1 (for each cell in list)	
Issue a 6P DELETE Packet	10	Multiple bytes (0 to 3)	Candidate cell List	0~slotframeLen gth-1 (for each cell in list)	
Issue a 6P COUNT Packet	11	0	None	None	
Issue a 6P LIST Packet	12	0	None	None	

Rev.	2.4 -	6TiSCH	Interope	erability	Test	Descripti	ons
						1	

Issue a 6P	13	0	None	None	
CLEAR Packet					

Table 4. List of commands

Any other value of CommandID not listed in Table 4 is treated as an error, and the command is discarded by the GD.

Beyond setting the set of parameters, listed in Table 4, the script when used with GD/root allows printing out on the screen of the laptop connected to GD/root, the received packet, and all the related information (type of packet, ASN when the packet is received, time offset, 6P return code, number of reserved cell, cell list etc); and when used with GD/sniffer, it allows parsing the captured packet. The format of the packet is printed out on the screen of the laptop connected to GD/sniffer to verify the correctness of the packet format itself.

Vendors are free to bring their own packet sniffer, able to support similar functions to those of GD/sniffer in order to perform both interoperability and conformance tests.

6. Test Descriptions

6.1 Synchronization

Test Number	1			
Test ID	TD_6	TiSCH_SYN	_01	
Test Objective	Check	that a 6N car	n synchronize to the EB sent by the DR and pa	arse all the
	IEs wa	ith their defau	ılt values.	
Configuration	Single	e-hop		
Applicability	SUT i	ncludes a PS	to see the EB on the air. To this purpose, GD/s	sniffer or a
	vendo	r PS can be u	sed.	
References	IEEE8	302.15.4e		
Pre-test	The D	R sends EBs	periodically, with a fast rate (equal to 10 sec,	according
conditions	to [2])	, so that the 6	5N does not need to send KAs for keeping	
	synch	ronization		
	The 6	N needs to lis	ten to one EB only	
	All EI	Bs are sent on	a single frequency.	
	Power	on 6N and D	DR	
Test sequence	Step	Туре	Description	Result
	1	Stimulus	The DR sends EB periodically	
	2	IOP Check	The 6N receives one EB and get	
			synchronized	
	3	IOP Check	The DR receives an EB sent by 6N	
IOP Verdict				

Test Number	2				
Test ID	TD_6	TD_6TiSCH_SYN_02			
Test Objective	Check	that a 6N car	n synchronize to the EB sent by the DR and pa	arse all the	
	IEs. (Fime slot IE d	loes not contain the default template. To simpl	y the test,	
	only the	he slot duration	on is changed to 15ms and keep the other value	es as used	
	in defa	ault template	(10ms)).		
Configuration	Single	e hop			
Applicability	SUT i	ncludes a PS	to see the EB and KA on the air. To this purpo	ose,	
	GD/sr	niffer, or a ver	ndor PS can be used.		
References	IEEE8	302.15.4e			
Pre-test	The D	R sends EBs	periodically with a rate equal to 10 sec [2].		
conditions	The 6	N is synchron	ized to DR with EB.		
	The 6	N sends KA p	periodically, every 1 sec.		
	All EI	B and KA pac	kets are sent on a single frequency.		
	Power	on 6N and D	DR.		
Test sequence	Step	Туре	Description	Result	
	1	Stimulus	The DR sends EB periodically		
	2	IOP Check	The 6N receives one EB and get		
			synchronized		
	3	IOP Check	The DR receives an EB sent by 6N		
IOP Verdict					

Test Number	3			
Test ID	TD_6	TiSCH_RPL_	_01	
Test Objective	Check	the value of	EB join priority of child 6N and a parent DR	
Configuration	Single	e-hop		
References	RPL			
Applicability	SUT i	ncludes a PS	to see the EB on the air. To this purpose, GD/s	sniffer, or a
	vendo	r PS can be u	sed.	
Pre-test	The D	R sends only	one EB.	
conditions	The D	R sends DIO	periodically.	
	The 6	N sends only	one EB.	
	Only t	he SYN frequ	lency is used for transmitting and receiving E	B.
	Power	on 6N and D	PR.	
Test sequence	Step	Туре	Description	Result
	1	Stimulus	The DR sends an EB	
	2	IOP Check	Wait till the 6N has acquired a RPL rank	
			and sends an EB back (which will be	
			captured by the PS)	
	3	IOP Check	Check the EB priority of the 6N is set to	
			the rank/256	
IOP Verdict				

Test Number	4					
Test ID	TD_6	TD_6TiSCH_RPL_02				
Test Objective	Check	Check the rank of 6Ns is computed correctly, according to OF0 function, as				
	specif	ied in draft-iet	f-6tisch-minimal-14			
Configuration	Single	Single-hop				
Applicability	SUT i	ncludes a PS t	o see the EB on the air. To this purpose, GD/s	sniffer, or a		
	vendo	r PS can be us	ed.			
References	draft-i	etf-6tisch-min	imal-14			
Pre-test	EB is	sent periodical	lly, every 10 sec.			
conditions	DIO is	s sent periodic	ally.			
Test sequence	Step	Туре	Description	Result		
	1	Stimulus	The DR sends an EB			
	2	IOP Check	6N1 synch with DR as per			
			TD_6TiSCH_SYN_01			
	3	IOP Check	6N1send EB			
	5	IOP Check	6N1 sends DIOs periodically			
	6	IOP Check	Check the ranks in the DIO messages of			
			6Ns is computed correctly, according to			
			OF0 function			
IOP Verdict						

6.3 6top Protocol (6P)

Test Number	5
Test ID	TD_6TiSCH_6P_01
Test Objective	Check a 6N can ADD a cell in the schedule according to draft-wang-6tisch-

 $Rev.\ 2.4-6TiSCH\ Interoperability\ Test\ Descriptions$

	6top-s	6top-sublayer-04			
Configuration	Star				
Applicability	SUT i	ncludes a PS t	o see the 6P packets on the air. To this purpos	se,	
	GD/sr	niffer, or a ven	dor PS can be used.		
References	IEEE8	302.15.4e, draf	ft-wang-6tisch-6top-sublayer-04		
Pre-test	The D	R sends EB po	eriodically, every 10 sec [2].		
conditions	All EI	B packets are s	ent on a single frequency.		
	Power	on DR.			
	Wait u	ntil both 6N j	oin the DR.		
Test sequence	Step	Туре	Description	Result	
	1	Stimulus	The 6N1 sends a 6P ADD request to the		
			DR for 1 slot. The candidate list is $\{4,5\}$		
	2	IOP Check	The PS captures the sequence of request		
			and response		
	3	IOC Check	Check the packet header captured by the		
			sniffer has the same format defined in the		
			draft-wang-6tisch-6top-sublayer-04 for		
			both the request and the response		
	4	IOC Check	Check that the returned code for the		
			operation is IANA_6TOP_RC_SUCCESS		
	5	Stimulus	The 6N2 sends a 6P ADD request to the		
			DR for 1 slot. The candidate list is {4}		
	6	IOP Check	The PS captures the sequence of request		
			and response		
	7	IOC Check	Check that the returned code for the		
			operation is IANA_6TOP_RC_RESET		
IOP Verdict					

Test Number	6			
Test ID	TD_6	TiSCH_6P_02		
Test Objective	Check	a 6N can CO	UNT the cells allocated in the schedule to a g	given
-	neight	oor, according	to draft-wang-6tisch-6top-sublayer-04.	
Configuration	Single	e-hop		
Applicability	SUT i	ncludes a PS t	o see the 6P packets on the air. To this purpos	se,
	GD/sn	hiffer, or a ven	dor PS can be used.	
References	IEEE8	302.15.4e, draf	ft-wang-6tisch-6top-sublayer-04	
Pre-test	The D	G sends EB p	eriodically, every 10 sec [2].	
conditions	All EF	B packets are s	ent on a single frequency.	
	Power on DR.			
	Wait until the 6N join the DR			
Test sequence	Step	Туре	Description	Result
	1	Stimulus	The 6N1 sends a 6P ADD request to the	
			DR for 1 slot. The candidate list is $\{4,5\}$.	
	2	Stimulus	The 6N1 sends a 6P COUNT request to	
			the DR.	
	3	IOP Check	The PS captures the sequence of request	
			and response	
	4	IOC Check	Check the packet header captured by the	

			sniffer has the same format defined in the				
			draft-ietf-6tisch-6top-sublayer-04 for both				
			the request and the response				
	5	IOC Check	Check that the returned code for the				
			operation is				
			IANA 6TOP RC SUCCESS. And the				
			counter value received is 2.				
IOP Verdict							
Test Number	7.						
Test ID	7. TD 6	TISCH 6P 03	1				
Test Objective	Check	a 6N can obt	 ain the LIST of cells in the schedule_accordit	ng to draft-			
Test Objective.	wang-	6tisch-6top-su	iblayer-04.	ig to utuit			
Configuration.	Single	e-hop	·				
Applicability.	SUT i	ncludes a PS t	o see the 6P packets on the air. To this purpos	se,			
	GD/sn	GD/sniffer, or a vendor PS can be used.					
References.	IEEE8	302.15.4e, draf	ft-ietf-6tisch-6top-sublayer-04.				
Pre-test	The D	G sends EB p	eriodically, every 10 sec [2].				
conditions.	All EF	B packets are s	sent on a single frequency.				
	Power	on DR.					
	Wait u	intil the 6N joi	in the DR				
Test sequence	Step	Туре	Description	Result			
*	1	Stimulus	The 6N1 sends a 6P ADD request to the				
			DR for 2 slots. The candidate list is $\{4,5\}$.				
	2	Stimulus	The 6N1 sends a 6P LIST request to the				
			DR.				
	3	IOP Check	The PS captures the sequence of request				
			and response				
	4	IOC Check	Check the packet header captured by the				
			sniffer has the same format defined in the				
			draft-wang-6tisch-6top-sublayer-04 for				
			both the request and the response				
	5	IOC Check	Check that the returned code for the				
			operation is				
			IANA_6TOP_RC_SUCCESS. And check				
			the cell list is $\overline{\{4,5\}}$				
IOP Verdict							

Test Number	8
Test ID	TD_6TiSCH_6P_04
Test Objective	Check a 6N can CLEAR the schedule of a node, according to draft-wang-
	6tisch-6top-sublayer-04.
Configuration	Single-hop
Applicability	SUT includes a PS to see the 6P packets on the air. To this purpose,
	GD/sniffer, or a vendor PS can be used.
References	IEEE802.15.4e, draft-wang-6tisch-6top-sublayer-04
Pre-test	The DG sends EB periodically, every 10 sec [2].
conditions	All EB packets are sent on a single frequency.
	Power on DR.
	Wait until the 6N join the DR

Rev. 2.4 – 6TiSCH Interoperability Test Descriptions

Test sequence	Step	Туре	Description	Result
	1	Stimulus	The 6N1 sends a 6P ADD request to the	
			DR for 2 slots. The candidate list is $\{4,5\}$.	
	2	Stimulus	The 6N1 sends a 6P COUNT request to	
			the DR.	
	3	IOP Check	Check that the returned code for the	
			operation is	
			IANA_6TOP_RC_SUCCESS. And the	
			counter value received is 2.	
	4	Stimulus	The 6N1 sends a 6P CLEAR request to	
			the DR.	
	5	IOP Check	The PS captures the sequence of request	
			and response	
	7	IOC Check	Check the packet header captured by the	
			sniffer has the same format defined in the	
			draft-wang-6tisch-6top-sublayer-04 for	
			both the request and the response	
	8	IOC Check	Check that the returned code for the	
			operation is	
			IANA_6TOP_RC_SUCCESS.	
	9	Stimulus	The 6N1 sends a 6P COUNT request to	
			the DR.	
	10	IOP Check	Check that the returned code for the	
			operation is	
			IANA_6TOP_RC_SUCCESS. And the	
			counter value received is 0.	
IOP Verdict				

Test Number	9			
Test ID	TD_6	TiSCH_6P_05	i	
Test Objective	Check	a 6N can DE	LETE a cell in the schedule according to draf	t-wang-
_	6tisch	-6top-sublayer	r-04	
Configuration	Star			
Applicability	SUT i	ncludes a PS t	o see the 6P packets on the air. To this purpos	se,
	GD/sn	iffer, or a ven	dor PS can be used.	
References	IEEE8	302.15.4e, draf	ft-wang-6tisch-6top-sublayer-04	
Pre-test	The D	R sends EB po	eriodically, every 10 sec [2].	
conditions	All EF	B packets are s	ent on a single frequency.	
	Power	on DR.		
	Wait u	intil both 6N j	oin the DR	
Test sequence	Step	Туре	Description	Result
	1	Stimulus	The 6N1 sends a 6P ADD request to the	
			DR for 1 slot. The candidate list is {4}.	
	2	Stimulus	The 6N1 sends a 6P DELETE request to	
			the DR for 1 slot. The candidate list is	
			{4}.	
	3	IOP Check	The PS captures the sequence of request	
			and response	

	4	IOC Check	Check the packet header captured by the sniffer has the same format defined in the draft-wang-6tisch-6top-sublayer-04 for both the request and the response	
	5	IOC Check	Check that the returned code for the operation is IANA_6TOP_RC_SUCCESS.	
	6	Stimulus	The 6N2 sends a 6P DELETE request to the DR for 1 slot. The candidate list is {4}	
	7	IOP Check	The PS captures the sequence of request and response	
	8	IOC Check	Check the packet header captured by the sniffer has the same format defined in the draft-wang-6tisch-6top-sublayer-04 for both the request and the response	
	9	IOC Check	Check that the returned code for the operation is IANA_6TOP_RC_RESET	
IOP Verdict				

Test Number	10			
Test ID	TD_6	TiSCH_6P_06	5	
Test Objective	Check	the timeout a	fter a 6P request, is implemented according to	o draft-
	wang-	6tisch-6top-su	ıblayer-04.	
Configuration	Single	e-hop		
Applicability	SUT i	ncludes a PS t	o see the 6P packets on the air. To this purpos	se,
	GD/sr	hiffer, or a ven	dor PS can be used.	
References	IEEE8	302.15.4e, draf	ft-wang-6tisch-6top-sublayer-04	
Pre-test	The D	G sends EB p	eriodically, every 10 sec [2].	
conditions	All EI	B packets are s	sent on a single frequency.	
	Power	on DR.		
	Wait u	intil the 6N joi	ins the DR	
	Disab	le the 6P Resp	onse of DR	
Test sequence	Step	Туре	Description	Result
	1	Stimulus	The 6N1 sends a 6P COUNT request to	
			the DR.	
	2	IOP Check	No Response capture from PS.	
	3	Stimulus	Enable the 6P Response of DR	
	4	Stimulus	The 6N1 sends a 6P ADD request to the	
			DR for 2 slots. The candidate list is {4,5}	
			within TIMEOUT.	
	5	IOP Check	The PS captures the sequence of request	
			and response	
	6	IOP Check	Check that the returned code for the	
			operation is IANA_6TOP_RC_ERR.	
	7	Stimulus	The 6N-1 sends a 6P ADD request to the	
			DR for 2 slots. The candidate list is {4,5}	
			after TIMEOUT.	
	8	IOP Check	The PS captures the sequence of Request	
			and Response	
	9	IOP Check	Check that the returned code for the	

		operation is IANA_6TOP_RC_SUCCESS.	
IOP Verdict			

6.2 6LoRH

Test Number	11				
Test ID	TD_6	TD_6TiSCH_6LoRH_01			
Test Objective	Check	that the sourc	e routing header is correctly encoded as a 6L	oRH	
	C	ritical RH3, ad	ccording to draft-ietf-6lo-routing-dispatch-02		
Configuration	Multi-	hop			
Applicability	SUT i	ncludes a PS t	o see the RH3 headers on the air. To this purp	oose,	
	GD/sr	niffer, or a ven	dor PS can be used.		
References	draft-i	etf-6lo-routing	g-dispatch-02		
Pre-test	The D	R sends EB po	eriodically, every 10 sec [2].		
conditions	All EI	B packets are s	ent on a single frequency.		
	Power	Power on DR.			
	Wait u	intil all the 6N	join the network.	•	
Test sequence	Step	Туре	Description	Result	
	1	Stimulus	Send an ICMPv6(echo request) packet to		
			6N3 (with source address inside of RPL		
			domain)		
	2	IOP Check	The ICMPv6 receives the echo request		
	3	IOP Check	The PS captures the sequence of packets		
			forwarded downstream to the 6N3		
	4	IOP Check	Check the 6LoRH RH3 header at each		
			hop is compliant with draft-ietf-6lo-		
			routing-dispatch-02		
IOP Verdict					

Test Number	12			
Test ID	TD_6	LoRH_02		
Test Objective	Check	that, when the	e packet's sent towards the DR, the RPL Info	rmation
	Option	n is correctly e	ncoded as a 6LoRH RPI, according to draft-i	etf-6lo-
	routin	g-dispatch-02		
Configuration	Multi-	hop		
Applicability	SUT i	ncludes a PS to	o see the RPI headers on the air. To this purpo	ose,
	GD/sn	iffer, or a ven	dor PS can be used.	
References	draft-i	etf-6lo-routing	g-dispatch-02	
Pre-test	The D	R sends EB pe	eriodically, every 10 sec [2].	
conditions	All EF	B packets are s	ent on a single frequency.	
	The D	R sends DIO	periodically, every 10 seconds.	
	Power	on DR.		
	Wait u	intil all the 6N	join the network.	
Test sequence	Step	Туре	Description	Result
	1	Stimulus	sends The 6N3 sends a DAO packet	
	2	IOP Check	The PS captures the sequence of packet	
			forwarded upstream to the DR	

	3	IOP Check	Check the 6LoRH RPI header at each hop	
			is compressed and compliant with draft-	
			ietf-6lo-routing-dispatch-02	
IOP Verdict				

Test Number	13			
Test ID	TD_6LoRH_03			
Test Objective	Check that, when the packet's travel inside the RPL domain, the IP in IP			
	6LoRH is not be presented in the packet.			
Configuration	Multi-hop			
Applicability	SUT includes a PS to see the RPI headers on the air. To this purpose,			
	GD/sniffer, or a vendor PS can be used.			
References	draft-ietf-6lo-routing-dispatch-02			
Pre-test	The DG sends EB periodically, every 10 sec [2].			
conditions	All EB packets are sent on a single frequency.			
	Power on DR.			
	Wait until all the 6N join the network.			
Test sequence	Step	Туре	Description	Result
	1	Stimulus	Send an echo request with source address	
			inside of RPL domain and destination	
			address of 6N3.	
	2	IOP Check	6N3 received the echo request and send	
			back echo response upstream to the DR.	
	3	IOP Check	k The PS captures the sequence of packet	
			forwarded downstream to the 6N 3 and	
			upstream to the DR	
	4	IOP Check	Check the 6LoRH RPI header at each hop	
			is compressed and compliant with draft-	
			ietf-6lo-routing-dispatch-02 and no IP in	
			IP 6LoRH present in the packet.	
IOP Verdict				

Test Number	14			
Test ID	TD_6LoRH_04			
Test Objective	Check that, when the packet travel outside a RPL domain, Ip in IP 6LoRH is present in the packet.			
Configuration	Multi-hop			
Applicability	SUT includes a PS to see the RPI headers on the air. To this purpose,			
	GD/sniffer, or a vendor PS can be used.			
References	draft-ietf-6lo-routing-dispatch-02			
Pre-test	The DG sends EB periodically, every 10 sec [2].			
conditions	All EB packets are sent on a single frequency.			
	Power on DR.			
	Wait until all the 6N join the network.			
Test sequence	Step	Туре	Description	Result
	1	Stimulus	Send an echo request with source address	
			outside of RPL domain and destination	
			address of 6N3.	
	2	IOP Check	6N3 received the echo request and send	

			back echo response upstream to the DR.	
	3	IOP Check	The PS captures the sequence of packet	
			forwarded downstream to the 6N3 and	
			upstream to the DR	
	4	IOP Check	Check the 6LoRH RPI header at each hop	
			is compressed and compliant with draft-	
			ietf-6lo-routing-dispatch-02 and IP in IP	
			6LoRH are presented in the packet.	
IOP Verdict				

7. Annex

7.1 IEEE802.15.4 Default Parameters

All the tests are performed using the following setting.

7.1.1 Address length

ALL IEEE802.15.4 addresses will be long (64-bit), because association is not part of [2].

The only exception is the broadcast address, 0xffff.

7.1.2 Frame version

ALL IEEE802.15.4 frames will be of version 2 (b10).

7.1.3 PAN ID compression and sequence number

ALL IEEE802.15.4 frames will contain the following field: a source address, a destination address, a sequence number, a destination PANID (no source PANID).

7.1.4 Payload termination IE

The IE payload list termination will NOT be included in the EB.

7.1.5 IANA for 6P IE related

Since they have not defined yet by AINA, for the Interop event, we use the following values:

IANA_GROUP_ID_SIXTOP_IE: 0x02

- IANA_SIXTOP_SUB_IE_ID : 0x00
- IANA_SIXTOP_VERSION : 0x01
- IANA_SFID_SF0: 0x00
- IANA_6TOP_CMD_ADD 0x01
- IANA_6TOP_CMD_DELETE 0x02
- IANA_6TOP_CMD_COUNT 0x03
- IANA_6TOP_CMD_LIST 0x04
- IANA_6TOP_CMD_CLEAR 0x05
- IANA_6TOP_RC_SUCCESS 0x06
- IANA_6TOP_RC_VER_ERR 0x07
- Rev. 2.4 6TiSCH Interoperability Test Descriptions

IANA_6TOP_RC_SFID_ERR	0x08
IANA_6TOP_RC_BUSY	0x09
IANA_6TOP_RC_RESET	0x0a
IANA_6TOP_RC_ERR	0x0b

7.1.6 RPL Operation Mode

There are two modes for a RPL Instrance to choose for maintaining Downward routes: Storing and Non-Storing modes. We use the Non-Storing mode during the tests.

Change History

Revision	Status	Author	Date	
1.0	Preliminary TD	X. Vilajosana	15 December 2015	
2.0	Consolidate TD, first release	M.R. Palattella	15 January 2016	
2.2	Test configuration and GD details	Tengfei Chang	18 January 2016	

Acknowledgments

ETSI would like to thank Dr. Thomas Watteyne and Prof. Xavier Vilajosana (6TiSCH Plugtests Technical coordinators), Dr. Maria Rita Palattella (TD leader) and Tengfei Chang (Golden image leader) for their effort in the development of this test suite.