PIE: A Lightweight Control Scheme to Address the
Bufferbloat Problem

Rong Pan, Preethi Natarajan, Chiara Piglione, Mythili Suryanarayana Prabhu,
Vijay Subramanian, Fred Baker and Bill VerSteeg
Advanced Architecture & Research Group, Cisco Systems Inc., San Jose, CA 95134, U.S.A.
{ropan, prenatar, cpiglion, mysuryan, vijaynsu, fred, versteb}@cisco.com

Abstract—Bufferbloat is a phenomenon where excess buffers in the
network cause high latency and jitter. As more and more interactive
applications (e.g. voice over IP, real time video conferencing and financial
transactions) run in the Internet, high latency and jitter degrade
application performance. There is a pressing need to design intelligent
queue management schemes that can control latency and jitter; and hence
provide desirable quality of service to users.

We present here a lightweight design, PIE (Proportional Integral
controller Enhanced), that can effectively control the average queueing
latency to a reference value. The design does not require per-packet extra
processing, so it incurs very small overhead and is simple to implement
in both hardware and software. In addition, the design parameters are
self-tuning, and hence PIE is robust and optimized for various network
scenarios. Simulation results, theoretical analysis and Linux testbed
results show that PIE can ensure low latency and achieve high link
utilization under various congestion situations.

Index Terms—Dbufferbloat, Active Queue Management (AQM), Quality
of Service (QoS), Explicit Congestion Notification (ECN)

I. INTRODUCTION

The explosion of smart phones, tablets and video traffic in the
Internet brings about a unique set of challenges for congestion
control. To avoid packet drops, many service providers or data center
operators require vendors to put in as much buffer as possible.
With rapid decrease in memory chip prices, these requests are easily
accommodated to keep customers happy. However, the above solution
of large buffers fails to take into account the nature of TCP, the
dominant transport protocol running in the Internet. The TCP protocol
continuously increases its sending rate and causes network buffers to
fill up. TCP cuts its rate only when it receives a packet drop or mark
that is interpreted as a congestion signal. However, drops and marks
usually occur when network buffers are full or almost full. As a result,
excess buffers, initially designed to avoid packet drops, would lead
to highly elevated queueing latency and jitter. The phenomenon was
detailed in 2009 [1] and the term, “bufferbloat” was introduced by
Jim Gettys in late 2010 [2].

Figure 1 shows an example of extremely long latencies that are
caused by the bufferbloat problem. Ping messages were sent overnight
from a hotel in Ireland to San Jose, CA on January 27, 2012. Figure
1 depicts frequent delays in the neighborhood of 8 to 9 seconds.
A review of the round trip time distribution, shown in Figure 2,
reveals that as many as eight copies of the same TCP segment, spaced
Retransmission Time Out (RTO) apart, were present at some time in
the hotel’s DSL service. This obviously reduces effective bandwidth;
any bandwidth used for an unnecessary retransmission is unavailable
for valuable data. It also reduces the Quality of Experience (QoE)
of users. If the service providers want to provide additional value-
add services, such as high volume video content delivery in these
networks, it is necessary to get control of the data buffered in
networks.

Active queue management (AQM) schemes, such as RED [3],
BLUE [4], PI [5], AVQ [6], etc, have been around for well over
a decade. AQM schemes could potentially solve the aforementioned

0O'Callaghan Davenport/San Jose RTT overnight 27 January

RTT{msec)

212

Time of Day

Fig. 1. An Example of Extreme Long Latency: RTTs measured using
ping messages sent overnight from a hotel in Ireland to San Jose, CA.

RTT Distribution: vast majority ~280 ms; peak 9281 ms

10000

H

QOccurences(#)

il

RTT (msec)

Fig. 2. Experiment RTT Distributions: number of occurrences as a
function of RTTs. There are spikes that are RTOs apart.

problem. RFC 2309 [7] strongly recommends the adoption of AQM
schemes in the network to improve the performance of the Internet.
RED is implemented in a wide variety of network devices, both in
hardware and software. Unfortunately, due to the fact that RED needs
careful tuning of its parameters for various network conditions, most
network operators do not turn RED on. In addition, RED is designed
to control the queue length which would affect delay implicitly. It
does not control latency directly.

Note that the delay bloat caused by poorly managed big buffer
is really the issue here. If latency can be controlled, bufferbloat,
i.e., adding more buffers for bursts, is not a problem. More buffer
space would allow larger bursts of packets to pass through as long

as we control the average queueing delay to be small. Unfortunately,
Internet today still lacks an effective design that can control buffer
latency to improve the quality of experience to latency-sensitive
applications. In addition, it is a delicate balancing act to design a
queue management scheme that not only allows short-term burst to
smoothly pass, but also controls the average latency when long-term
congestion persists.

Recently, a new AQM scheme, CoDel [8], was proposed to
control the latency directly to address the bufferbloat problem. CoDel
requires per packet timestamps. Also, packets are dropped at the
dequeue function after they have been enqueued for a while. Both of
these requirements consume excessive processing and infrastructure
resources. This consumption will make CoDel expensive to imple-
ment and operate, especially in hardware.

In this paper, we present a lightweight algorithm, PIE (Proportional
Integral controller Enhanced), which combines the benefits of both
RED and CoDel: easy to implement like RED while directly control
latency like CoDel. Similar to RED, PIE randomly drops a packet
at the onset of the congestion. The congestion detection, however, is
based on the queueing latency like CoDel instead of the queue length
like conventional AQM schemes such as RED. Furthermore, PIE also
uses the latency moving trends: latency increasing or decreasing, to
help determine congestion levels.

Our simulation and lab test results show that PIE can control
latency around the reference under various congestion conditions. It
can quickly and automatically respond to network congestion changes
in an agile manner. Our theoretical analysis guarantees that the PIE
design is stable for arbitrary number of flows with heterogeneous
round trip times under a predetermined limit.

In what follows, Section II specifies our goals of designing the
latency-based AQM scheme. Section III explains the scheme in
detail. Section IV presents simulation and lab studies of the proposed
scheme. In Section V, we present a control theory analysis of PIE.
Section VI concludes the paper and discusses future work.

II. DESIGN GOALS

We explore a queue management framework where we aim
to improve the performance of interactive and delay-sensitive
applications. The design of our scheme follows a few basic criteria.

o Low Latency Control. We directly control queueing latency
instead of controlling queue length. Queue sizes change with
queue draining rates and various flows’ round trip times. Delay
bloat is the real issue that we need to address as it impairs
real time applications. If latency can be controlled to be small,
bufferbloat is not an issue. As a matter of fact, we would allow
more buffers for sporadic bursts as long as the latency is under
control.

e High Link Utilization. We aim to achieve high link utilization.
The goal of low latency shall be achieved without suffering
link under-utilization or losing network efficiency. An early
congestion signal could cause TCP to back off and avoid queue
buildup. On the other hand, however, TCP’s rate reduction
could result in link under-utilization. There is a delicate balance
between achieving high link utilization and low latency.

o Simple Implementation. The scheme should be simple to
implement and easily scalable in both hardware and software.
The wide adoption of RED over a variety of network
devices is a testament to the power of simple random early
dropping/marking. We strive to maintain similar design

Queue Buffer

Random Drop

Queue
Length

Latency-based
Drop Probability
Calculation

Departure Rate
Estimation

Dequeue Rate

Fig. 3. Overview of the PIE Design. The scheme comprises three simple
components: a) random dropping at enqueuing; b) latency based drop
probability update; c¢) dequeuing rate estimation.

simplicity.

o Guaranteed stability and Fast Responsiveness. The scheme
should ensure system stability for various network topologies
and scale well with arbitrary number streams. The system
also should be agile to sudden changes in network conditions.
Design parameters shall be set automatically. One only needs to
set performance-related parameters such as target queue delay,
not design parameters.

We aim to find an algorithm that achieves the above goals. It is
noted that, although important, fairness is orthogonal to the AQM
design whose primary goal is to control latency for a given queue.
Techniques such as Fair Queueing [9] or its approximate such as
AFD (Approximate Fair Dropping) [10] can be combined with any
AQM scheme to achieve fairness. Therefore, in this paper, we focus
on controlling a queue’s latency and ensuring flows’ fairness is not
worse than those under the standard DropTail or RED design.

III. THE PIE SCHEME

In the section, we describe in detail the design of PIE and its
operations. As illustrated in Figure 3, our scheme comprises three
simple components: a) random dropping at enqueuing; b) periodic
drop probability update; c) dequeuing rate estimation.

The following subsections describe these components in further
detail, and explain how they interact with each other. At the end of
this section, we will discuss how the scheme can be easily augmented
to precisely control bursts.

A. Random Dropping

Like most state-of-the-art AQM schemes, PIE would drop packets
randomly according to a drop probability, p, that is obtained from
the “drop probability calculation” component. No extra step, like
timestamp insertion, is needed. The procedure is as follows:

Random Dropping:

Upon packet arrival

randomly drop a packet with a probability p.

B. Drop Probability Calculation

The PIE algorithm updates the drop probability periodically as
follows:

o estimate current queueing delay using Little’s law:

_ qlen
cur_del " avg_drate’

o calculate drop probability p as:
p = pt+ax(cur_del—ref_del)+ Bx*(cur_del —old_del);

« update previous delay sample as:
old_del = cur_del.

The average draining rate of the queue, avg_drate, is obtained
from the “departure rate estimation” block. Variables, cur_del and
old_del, represent the current and previous estimation of the queueing
delay. The reference latency value is expressed in ref_del. The
update interval is denoted as Typdate. Parameters o and g are scaling
factors.

Note that the calculation of drop probability is based not only on
the current estimation of the queueing delay, but also on the direction
where the delay is moving, i.e., whether the delay is getting longer
or shorter. This direction can simply be measured as the difference
between cur_del and old_del. Parameter o« determines how the
deviation of current latency from the target value affects the drop
probability; [exerts the amount of additional adjustments depending
on whether the latency is trending up or down. The drop probability
would be stabilized when the latency is stable, i.e. cur_del equals
old_del; and the value of the latency is equal to ref_del. The relative
weight between « and [determines the final balance between latency
offset and latency jitter. This is the classic Proportional Integral
controller design [11], which has been adopted for controlling the
queue length before in [5] and [12]. We adopt it here for controlling
queueing latency. In addition, to further enhance the performance, we
improve the design by making it auto-tuning as follows:

if p<1%: a=a/8; f=p5/8:

else if p < 10%: o = &/2; B = B/2;

else: o = &; B = B;
where & and 3 are static configured parameters. Auto-tuning would
help us not only to maintain stability but also to respond fast to
sudden changes. The intuitions are the following: to avoid big
swings in adjustments which often leads to instability, we would like
to tune p in small increments. Suppose that p is in the range of 1%,
then we would want the value of « and (3 to be small enough, say
0.1%, adjustment in each step. If p is in the higher range, say above
10%, then the situation would warrant a higher single step tuning,
for example 1%. The procedures of drop probability calculation can
be summarized as follows.

Drop Probability Calculation:

Every Typdate interval

1. Estimation current queueing delay:

qlen

cur_del = ————.
avg_drate

2. Based on current drop probability, p, determine suitable step

scales:
ifp < 1%, a= a/8 B=7p/8
elseif p <10%, a= &/2; B=p5/2;
else, a= @a; ﬂz,é;

3. Calculate drop probability as:
p=p+ ax(cur_del —ref_del) + B * (cur_del — old_del);
4. Update previous delay sample as:

old_del = cur_del.

We have discussed packet drops so far. The algorithm can be
easily applied to networks codes where Early Congestion Notification
(ECN) is enabled. The drop probability p could simply mean marking
probability.

C. Departure Rate Estimation

The draining rate of a queue in the network often varies either
because other queues are sharing the same link, or the link capacity
fluctuates. Rate fluctuation is particularly common in wireless
networks. Hence, we decide to measure the departure rate directly
as follows:

Departure Rate Calculation:

Upon packet departure
1. Decide to be in a measurement cycle if:

qlen > dq_threshold,
2. If the above is true, update departure count dq_count:
dq_count = dq_count + dq_pktsize;

3. Update departure rate once dq_count > dq_threshold and
reset counters:

dg_int = now — start;
dq_rate = 7dq_c?unt ;
dq_int
avg_drate = (1 —¢)x*avg_drate + € x dq_rate
start = mnow.
dg_count = O0;

From time to time, short, non-persistent bursts of packets result
in empty queues, this would make the measurement less accurate.
Hence we only measure the departure rate, dq_rate, when there
are sufficient data in the buffer, i.e., when the queue length is over
a certain threshold, dq_threshold. Once this threshold is crossed,
we obtain a measurement sample. The samples are exponentially
averaged, with averaging parameter ¢, to obtain the average dequeue
rate, avg_drate. The parameter, dq_count, represents the number
of bytes departed since the last measurement. The threshold is
recommended to be set to 10KB assuming a typical packet size of
around 1KB or 1.5KB. This threshold would allow us a long enough
period, dgq_int, to obtain an average draining rate but also fast enough
to reflect sudden changes in the draining rate. Note that this threshold
is not crucial for the system’s stability.

D. Handling Bursts

The above three components form the basis of the PIE algorithm.
Although we aim to control the average latency of a congested queue,
the scheme should allow short term bursts to pass through the system
without hurting them. We would like to discuss how PIE manages
bursts in this section.

Bursts are well tolerated in the basic scheme for the following
reasons: first, the drop probability is updated periodically. Any short
term burst that occurs within this period could pass through without
incurring extra drops as it would not trigger a new drop probability
calculation. Secondly, PIE’s drop probability calculation is done
incrementally. A single update would only lead to a small incremental
change in the probability. So if it happens that a burst does occur
at the exact instant that the probability is being calculated, the
incremental nature of the calculation would ensure its impact is kept
small.

Nonetheless, we would like to give users a precise control of the
burst. We introduce a parameter, max_burst, that is similar to the
burst tolerance in the token bucket design. By default, the parameter
is set to be 100ms. Users can certainly modify it according to their
application scenarios. The burst allowance is added into the basic
PIE design as follows:

Burst Allowance Calculation:

Upon packet arrival
1. If burst_allow > 0

enque packet bypassing random drop;

Upon dq_rate update
2. Update burst allowance:

burst_allow = burst_allow — dq_int;

3. if p = 0; and both cur_del and old_del less than
ref_del /2, reset burst_allow,

burst_allow = max_burst,

The burst allowance, noted by burst_allow, is initialized to
max_burst. As long as burst_allow is above zero, an incoming
packet will be enqueued bypassing the random drop process. When-
ever dq_rate is updated, the value of burst_allow is decremented
by the departure rate update period, dg_int. When the congestion
goes away, defined by us as p equals to 0 and both the current and
previous samples of estimated delay are less than ref_del/2, we
reset burst_allow to max_burst.

IV. PERFORMANCE EVALUATION

We evaluate the performance of the PIE scheme in both ns-
2 simulations and testbed experiment using Linux machines. As
the latest design CoDel is in Linux release, we compare PIE’s
performance against RED in simulations and against CoDel in testbed
evaluations.

A. Simulations Evaluation

In this section we present our ns-2 [13] simulations results. We first
demonstrate the basic functions of PIE using a few static scenarios;
and then we compare PIE and RED performance using dynamic sce-
narios. We focus our attention on the following performance metrics:
instantaneous queue delay, drop probability, and link utilization.

The simulation setup consists of a bottleneck link at 10Mbps
with a RTT of 100ms. Unless otherwise stated the buffer size is
200KB. We use both TCP and UDP traffic for our evaluations.
All TCP traffic sources are implemented as TCP New Reno
with SACK running an FTP application. While UDP traffic is
implemented using Constant Bit Rate (CBR) sources. Both UDP
and TCP packets are configured to have a fixed size of 1000B.
Unless otherwise stated the PIE parameters are configured to

Queueing Delay [msec]
Queueing Delay [msec]

o
0 10 20 30 40 50 60 70
Simulation Time [Sec]

(b) Heavy 50 TCP Flows

20 30 4 50 60 70 80 90 100
Simulation Time [Sec]

(a) Light 5 TCP Flows

<0

80 90 100

80

70

60

50

Queueing Delay [msec]

0 10 20 30 4 50 60 70 80 9 100
Simulation Time [Sec]

(¢) Mix 5TCP + 2UDP Flows

Fig. 4. Queueing Latency Under Various Traffic Loads: a) 5 TCP flows;
b) 50 TCP flows; c¢) 5 TCP + 2 UDP flows. Queueing latency is controlled
at the reference level of 20ms regardless of the traffic intensity.

their default values; i.e., delay_ref = 20ms, Typdate = 30ms, & =

0.125Hz, 8 = 1.25Hz, dq_threshold = 10KB, max_burst = 100ms.

Throughput [Mbps]
Throughput [Mbps]

o
0 0 20 30 40 50 60 70 80 90 100
Simulation Time [Sec]

(b) Heavy 50 TCP Flows

0 10 20 30 40 50 60 70
Simulation Time [Sec]

(a) Light 5 TCP Flows

80 90 100

I'hroughput [Mbps]

0

0 10 20 30 4 50 60 70 8 9 100
Simulation Time [Sec]

(c) Mix 5STCP + 2UDP Flows

Fig. 5. Link Throughput Under Various Traffic Loads: a) 5 TCP flows; b)
50 TCP flows; c) 5 TCP + 2 UDP flows. High link utilization is achieved
regardless of traffic intensity, even under low multiplexing case.

Function Verification: We first validate the functionalities of PIE,
making sure it performs as designed using static traffic sources with
various loads.

1) Light TCP traffic: Our first simulation evaluates PIE’s perfor-
mance under light traffic load of 5 TCP flows. Figure 4(a) shows the
queueing delay, and Figure 5(a) plots the instantaneous throughput
respectively. Figure 4(a) demonstrates that the PIE algorithm is able to
maintain the queue delay around the equilibrium reference of 20ms.
Due to low multiplexing, TCP’s sawtooth behavior is still slightly
visible in Figure 4(a). Nonetheless, PIE regulates the TCP traffic
quite well so that the link is close to its full capacity as shown in
Figure 5(a). The average total throughput is 9.82Mbps. Individual

max_burst=100ms - burst_length=100Ms ==t
50 max_burst=100ms - burst_length=200ms —s—
max_burst=0ms - burst_length=100ms —%—
max_burst=0ms - burst_length=200ms —a&—

40 ﬂ"

30

20

ol

1 1.1 12 13 14 15

Simulation Time [Sec]

Cumulative number of drops

Fig. 6. PIE’s Burst Control: at simulation time 1s, the UDP flow starts
sending traffic. With a burst allowance of 100ms, the flow can either
pass through without incurring drops or starting incurring drops at 1.1sec.
With a burst allowance of Oms, the flow would incur drops right from
the beginning. The longer the burst is, the higher the number of drops is.

flows’ throughputs are 1.86Mbps, 2.15Mbps, 1.80Mbps, 1.92Mbps
and 2.09Mbps respectively, close to their fair share.

2) Heavy TCP traffic: In this test scenario, we increase the number
of TCP flows to 50. With higher traffic intensity, the link utilization
reaches 100% as clearly shown in Figure 5(b). The queueing delay,
depicted in Figure 4(b), is controlled around the desired 20ms,
unaffected by the increased traffic intensity. The effect of sawtooth
fades in this heavy traffic case. The queueing delay fluctuates more
evenly around the reference level. The average throughput reaches
full capacity of 10Mbps as shown in Figure 5(b).

3) Mixture of TCP and UDP traffic: To demonstrate PIE’s per-
formance under persistent heavy congestion, we adopt a mixture of
TCP and UDP traffic. More specifically, we have 5 TCP flows and
2 UDP flows (each sending at 6Mbps). The corresponding latency
plot can be found in Figure 4(c). Again, PIE is able to contain the
queueing delay around the reference level regardless the traffic mix
while achieving 100% throughput shown in Figure 5(c).

4) Bursty Traffic: As the last functionality test, we show PIE’s
ability to tolerate bursts, whose maximum value is denoted by
max_burst. We construct a test where one short lived UDP traffic
sends at a peak rate of 25Mbps over a burst_len period of time.
We set burst_len to be 100ms and 200ms respectively. We also set
max_burst values to be 0 (i.e., no burst tolerance) and 100ms. The
UDP flow starts sending at simulation time of 1s. Figure 6 plots
the number of dropped packets as a function of the simulation time
for four combinations of burst_len and max_burst. It is obvious
from the graph that if the burst_len is less than max_burst,
no packets are dropped. When burst_len equals to 200ms, the
first 100ms of the burst are allowed into the queue and the PIE
algorithm starts dropping only afterword. Similarly, if we set
the PIE scheme to have no burst tolerance (i.e., max_burst =
0), the algorithm starts dropping as soon as the queue starts filling up.

Performance Evaluation and Comparison: The functions of PIE
are verified above. This section evaluates PIE under dynamic traffic
scenarios, compares its performance against RED and shows how
PIE is better suited for controlling latency in today’s Internet. The
simulation topology is similar to the above. The core router runs
either the RED or PIE scheme. The buffer size is 2MB for the two
schemes. RED queue is configured with the following parameters:
ming, = 20% of the queue limit, max., = 80% of the queue limit,
maz, = 0.1 and g_weight = 0.002. The PIE queue is configured
with the same parameters as in the previous section.

800

RED ——
PIE ——
700

600
500
400

300

B [\/W\/\A/\/yv

0 20 40 60 80 100 120 140
Simulation Time (Sec)

Queueing Delay (msec)

Fig. 7. PIE vs. RED Performance Comparison Under Varying Link
Capacity: 0s-50s, link capacity = 100Mbps, 50s-100s, link capacity =
20Mbps, 100s-150s, link capacity = 100Mbps. By only controlling the
queue length, RED suffers long queueing latency when the queue draining
rate changes. PIE is able to quickly adapt to changing network conditions
and consistently control the queueing latency to the reference level of
20ms.

5) Varying Link Capacity: This test starts with the core capacity
of 100Mbps; 100 TCP flows start randomly in the initial second.
At 50s, the available bandwidth drops to 20Mbps and jumps back
to 100Mbps at 100s. The core routers queue limit is set to 2MB.
Figure 7 plots the queuing latency experienced by the RED and
PIE queues. The figure shows that both AQM schemes converge
to equilibrium after a couple of seconds from the beginning of the
simulation. The queues experience minimal congestion during the
first 50s. RED operates around min., and the queue latency settles
around 30ms accordingly. Similarly, PIE converges to the equilibrium
value of 20ms. When available bandwidth drops to 20Mbps (at 50s),
the queue size and latency shoot up for both RED and PIE queues.
RED’s queue size moves from min¢, to maz¢, to accommodate
higher congestion, and the queuing latency stays high around 300ms
between 50s and 100s. On the other hand, PIE’s drop probability
quickly adapts, and in about three seconds, PIE is able to bring
down the latency around the equilibrium value (20ms). At 100s,
the available bandwidth jumps back to 100Mbps. Since congestion
is reduced, RED’s queue size comes down back to min:, and the
latency is reduced as well. PIE’s drop probability scales down quickly,
allowing PIE’s latency to be back at the equilibrium value. Note that
due to static configurations of RED’s parameters, it cannot provide
consistent performance under varying network conditions. PIE, on
the other hand, automatically adapts itself and can provide steady
latency control for varying network conditions.

6) Varying Traffic Intensity: We also verify both schemes’ perfor-
mance under varying network traffic load with the number of TCP
flows ranging from 10 through 50. The simulation starts with 10
TCP flows and the number of TCP flows jumps to 30 and 50 at 50s
and 100s, respectively. The traffic intensity reduces at 150s and 200s
when number of flows drops back to 30 and 10, respectively. Figure 8
plots the queuing latency experienced under the two AQM schemes.
Every time the traffic intensity changes, RED’s operating queue size
and latency are impacted. On the other hand, PIE quickly adjusts the
dropping probability in a couple of seconds, and restore the control
of the queuing latency to be around equilibrium value.

B. Testbed Experiments

We also implemented PIE in Linux Kernel. In this section, we
evaluate PIE in the lab setup and compare it against CoDel whose
design is the most up to date in Linux. The current implementation
is on Kernel Version 3.5-rcl.

250

RED ——
PIE ——
20ms

200

Queueing Delay (msec)

o 50 100 150 200 250

Simulation Time (Sec)

Fig. 8. PIE vs. RED Performance Comparison Under Varying Traffic
Intensity: 0s-50s, traffic load is 10 TCP flows; 50s-100s, traffic load is
30 TCP flows;100s-150s, traffic load is increased to 50 TCP flows; traffic
load is then reduced to 30 and 10 at 200s and 250s respectively. Due to
static configured parameters, the queueing delay increases under RED as
the traffic intensifies. The autotuning feature of PIE, however, allows the
scheme to control the queueing latency quickly and effectively.

iperf receiver

iperf sender

Bottleneck
bandwidth 10Mbps.

Delay emulator
Router implementing 100ms
PIE

Fig. 9. The Testbed Setup: our experiment testbed consists of four unique
Linux-based machines. The router implements AQM schemes.

Our experiment testbed consists of four unique Linux-based ma-
chines as shown in Figure 9. The sender is directly connected to the
router with the PIE implemention. Hierarchical token bucket (htb)
qdisc has been used to create a bandwidth constraint of 10Mbps. The
router is connected to the receiver through another server. The delay
is added in the forward direction using a delay emulator. Iperf tool is
run on the sender and receiver to generate traffic. All measurements
are done at the router. We obtain statistics and measure throughput
at the router through the tc interface.

For all our lab test scenarios, we use the following PIE parameters
PIE: & =0.125, B = 1.25, buffer size = 200 packets, Ty pdate = 30ms.
CoDel is used for comparison, whose parameters are set accordingly
to the default: interval = 100ms and queue_limit = 200 packets.
Packet sizes are 1KB for both schemes.

FE ——
CODEL ——

PIE ——

CODEL ——

Probability
°
Probability

o 20 a0 50 80 100 o 20 2 50 80 100
Delay (msec) Delay (msec)

(a) Reference Delay = 5ms (b) Reference Delay = 20ms
Fig. 10. Cdf of Queueing Delay Comparison Between PIE and CoDel:
20 TCP flows. When the reference delay is Sms, 70% of the delays under

PIE vs. 30% of delays under CoDel are less than 5ms. PIE and CoDel
behave similarly when the reference delay is 20ms.

1) TCP Traffic: We evaluate the performance of PIE and CoDel
in a moderately congested scenario. We use 20 NewReno TCP flows
with RTT = 100ms and run the test for 100 seconds. Figure 10 plots
the cdf curve of the queueing delay for PIE and CoDel when the

Probability
°
Probability

[50 100 150 200 250 o 50 100 150 200 250
Delay (msec) Delay (msec)

(a) Reference Delay = 5ms (b) Reference Delay = 20ms
Fig. 11. Cdf of Queueing Delay Comparison Between PIE and CoDel: 5
TCP flows and 2 UDP flows. It is obvious that, under heavy congestion,

CoDel cannot control the latency to the the target values while PIE
behaves consistently according to the design.

reference delay is 5ms and 20ms respectively.! Both schemes are
able to control the queueing delay reasonably well. When the target
delay is 5ms, more than 90% packets under both schemes experience
delays that are less than 20ms. It is clear that PIE performs better:
70% of the delays are less than Sms while CoDel has only 30%. When
the reference delay equals to 20ms, the performance of both schemes
look similar. PIE still performs slightly better: 50% of packet delays
are less than 20ms while only 40% of packet delays are less than
20ms under CoDel. For the 20ms target delay case, the throughput
for PIE is 9.87Mbps vs. CoDel is 9.94Mbps. For the Sms target delay
case, the throughput for PIE is 9.66Mbps vs. CoDel is 9.84Mbps.
CoDel’s throughput is slightly better than PIE.

2) Mixture of TCP and UDP Traffic: In this test, we show the
stability of both schemes in a heavily congested scenario. We setup 5
TCP flows and 2 UDP flows (each transmitting at 6Mbps). The 2 UDP
flows result in a 20% oversubscription on the 10Mbps bottleneck.
Figure 11 shows the cdf plot for the delay. Under the mixture of TCP
and UDP traffic, it is obvious that CoDel cannot control the latency
under the target values of Sms and 20ms respectively. Majority of the
packets experience long delays over 100ms. PIE, on the other hand,
behaves consistently according to the design: with 70% less than the
target of Sms, and 60% less than the target of 20ms respectively.
Vast majority of packets, close to 90%, do not experience delay that
is more than twice of the target value. In this test, when the target
delay equals to 20ms, the throughput for PIE is 9.88Mbps vs. CoDel
is 9.91Mbps. When the target delay equals to Sms, the throughput for
PIE is 9.79Mbps vs. CoDel is 9.89Mbps. Throughputs are similar.

V. THEORETICAL ANALYSIS

We formulate our analysis model based on the TCP fluid-flow and
stochastic differential equations originated in the work by Misra et
al. [14] and [15]. We consider multiple TCP streams passing through
a network that consists of a congested link with a capacity Cj. It is
shown in [14] that the TCP window evolution can be approximated
as

aw() 1 W)W (t — R(t)))
&~ RO 2RE-R@p) PU-ELE @
dg(t) _ W(@) .
o WN@) - Cy; 2)

where W (¢) and ¢(t) denote the TCP window size and the expected
queue length at time ¢. The load factor, number of flows, is indicated

IThere is a subtle difference in the definition of terms: in CoDel, the
parameter, target, represents the target latency, while del_ref refers the
reference equilibrium latency in PIE. For easy comparison, we would use
“Reference Delay” to refer the target latency, target, in CoDel and the
reference equilibrium latency, del_ref, in PIE.

RoC] N
N2 sW Ry g
N " 1
8§
- st R2Cy + Ro
_V_J —
TCP dynamic Queue dynamic
s dp Bta/2
ek ERl et
s
— —

Loop Latency PIE dynamic

Fig. 12. The Feedback Loop of PIE: it captures TCP, Queue and PIE
dynamics; and also models the RTT delay.

a @ @
S S S
I 1 I

Phase Margin
n
S
I

o U

Fig. 13. Phase Margin as a Function of Parameters o and $: in order
for a system to be stable, we need a phase margin above 0°.

as N(t). R(t) represents the round trip time including the queueing
delay. Note that R(t) denotes the harmonic mean of the flows’ round
trip times. The drop or mark probability is indicated as p(t).

AQM schemes determine the relationship between the drop or mark
probability p(¢) and the queue length ¢(t). This relationship in PIE is
detailed in Section III-B. PIE increases its drop or mark probability
based on current queueing delay and the delay moving trend. Using
Bilinear Transformation, we can convert the PIE design into a fluid
model as follows:

q(t)

T(t) = o 3)

WO GTOTret gy I
where 7 and T,..; represent the queue latency and its equilibrium
reference value, and 7T’ is the update interval, which equals to T, pdate-
Note that although 7" does not show up directly in the discrete form
of the algorithm, it does play a role in the overall system’s behavior.

These fluid equations describe our control system’s overall be-
havior from which we can derive the equilibrium and dynamic
characteristics as follows.

A. Linearized Continuous System

When the system reaches steady state, the operating point
(Wo, o, Po) is defined by W =0, ¢ = 0 and 7 = 7,..s so that

W2p, =2 and W, = R}’VCZ. 5)

Bode Diagram
Gm=5.2 dB (at 8.54 rad/sec) , Pm =29.5 deg (at 5.43 rad/sec)

Magnitude (dB)

ol ——RTT=50ms ||
~———RTT=100ms

-90
-135
-180 :

10” 10° 10! 10° 10
Frequency (rad/sec)

Phase (deg)

Fig. 14. An Illustration about Stability Margin for Different RTTs: for
R, < RT, the gain of the system reduces and poles are moved towards
high frequency. As a result, phase margin increases.

We can approximate our system’s dynamics by their small-signal
linearization about an operating point based on small perturbations:

eg. W = W, + §W. Our system equations above lead to the
following:
3i(t) = - — WD)~ 1-0a0) ©
SW(t) = —%(6W(t)—6W(t—Ro))
O st — R)
59() = g+ 2 g0, ®)

From Equations (5) to (8), we can obtain the loop transfer function
in Laplace domain shown in Figure 12 as:
_n((B+a/2s+7) e
(s+ Rzg—]gl)(s + 1%) s
; —JjwRo
e, ~ o Mw/mEl) e)
(Jw/s1+1)(jw/s2 +1) jw

where K = aR,/(poT), z1 = a/((B + a/2)T), s1 = v/2po/Ro
and s2 = 1/R,. Note that the loop scales with C'/N, which can be
derived from the drop probability p, and R,.

g(s)

R

B. Determining Control Parameters o, 3

Although many combinations of 7', & and 8 would lead to system
stability, we choose our parameter settings according to the following
guideline. We choose 7' so that we sample the queueing latency two
or three times per round trip time. Then, we set the values of o and 3
so that the Bode diagram analysis would yield enough phase margin.
Figure 13 shows what phase margin would be for various values of
o and § given that T = 30ms, R = 100ms and p~ = 0.01%. It is
obvious that, in order to have system stability, we need to choose «
and $3 values so that we have phase margin above 0°.

Once we choose the values of « and (5 so that the feedback system
in Equation (9) is stable for R and p~. For all systems with R, <
R* and p, > p~, the gain of the loop, |G(s)| = aRs/(p.T), <
aRT/(p~T), s1 > /2p~/R" and 52 > 1/R*. Hence, if we make
the system stable for R™ and p~, the system will be stable for all
R, < R* and p, > p~. Figure 14 illustrates this point showing how
the phase margin improves from 29.5° to 105.0° when R, is 50ms
instead of R of 100ms.

We could fix the values of o and (8 and still guarantee stability
across various network conditions. However, we need to choose

@
)

Phase Margin (degree)
IS
8

@
8

0125:1.25

“““ 00625 : 0626
0.0156 : 0.156

o —s—auto-tuning 5

[} 01 0‘2 0‘3 0‘4 0‘5 06

sare)
Fig. 15. Phase Margin as a Function of ,/p,: three pairs of « : 3 settings.
Lower values of « and 3 gives higher phase margin. Autotuning picks
different pair for different p, range to optimally tradeoff stability vs.
response time.

0126:1.26

0.0625:0.625
0.0156:0.156
6 —e—auto-tuning 4

Loop Bandwidth (Hz)
-

o 0.1 02 03 0.4 05 06
Sart(p)

Fig. 16. Loop Frequency as a Function of /p,: three pairs of o : 3
settings. Lower values of o and 8 has slower response time. Autotuning
picks different pair for different p, range to optimally tradeoff stability
Vs. response time.

conservative values of o and f to achieve stability. For example,
we need to set &« = 0.0156 and 8 = 0.156 in the above case to
guarantee a phase margin of 25° for p, ~ 0.01%. However, when
the drop probability increases, the system response time would take
a hit. Figure 15 shows the phase margin as a function of ,/p, 2
for o : B values of 0.125:1.25, (0.125/2):(1.25/2) = 0.0625:0.625,
(0.125/8):(1.25/8) = 0.0156:0.156, respectively. Their corresponding
loop bandwidths, which directly determine their response time, are
shown in Figure 16. As shown in Figure 15, if we choose a : 3
values to be 0.0625:0.625 and 0.125:1.25, we don’t have enough
phase margin to ensure stability when p, < 1%, ie. \/po < 0.1
On the other hand, these two higher value pairs would lead to faster
response time as depicted in Figure 16.

Auto-tuning in PIE tries to solve the above problem by adapting
its control parameters o and [based on congestion levels. How
congested a link is can be easily inferred from the drop probability
Po. When the network is lightly congested, say under 1%, we choose
numbers that can guarantee stability. When the network is moderately
congested, say under 10%, we can increase their values to increase
system response time. When the network is heavily congested, we can
increase their values even further without sacrificing stability. While
the adjustment can be continuous, we choose discrete numbers for
simplicity. As demonstrated in Figure 15 and 16, the auto-tuning
design in PIE can improve the response time of the loop greatly
without losing stability. Our tests results in Section IV als shows that

2We choose /Do instead of p, because sy scales with /po.

auto-tuning works well in varying congestion environment.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have described PIE, a latency-based design for
controlling bufferbloat in the Internet. The PIE design based its
random dropping decisions not only on current queueing delay but
also on the delay moving trend. In addition, the scheme self-tunes
its parameters to optimize system performance. As a result, PIE is
effective across diverse range of network scenarios. Our simulation
studies, theoretical analysis and testbed results show that PIE can
ensure low latency under various congestion situations. It achieves
high link utilization while maintaining stability consistently. It is a
light-weight, enqueing based design that works with both TCP and
UDP traffic. The PIE design only requires low speed drop probability
update, so it incurs very small overhead and is simple enough to
implement in both hardware and software.

Going forward, we will study how to automatically set latency
references based on link speeds: set low latency references for high
speed links while being conservative for lower speed links. We will
also explore efficient methods to provide weighted fairness under PIE.
There are two ways to achieve this: either via differential dropping
for flows sharing a same queue or through class-based fair queueing
structure where flows are queued into different queues. There are pros
and cons with either approach. We will study the tradeoffs between
these two methods.

REFERENCES

B. Turner, “Has AT&T Wireless Data Congestion Been Self-Inflicted?”

[Online]. Available: BroughTurnerBlog

J. Gettys, “Bufferbloat: Dark buffers in the internet,” IEEE Internet

Computing, vol. 15, pp. 95-96, 2011.

S. Floyd and V. Jacobson, “Random early detection gateways for

congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,

no. 4, pp. 397413, Aug. 1993.

W. Feng, K. Shin, D. Kandlur, and D. Saha, “The blue active queue man-

agement algorithms,” IEEE/ACM Transactions on Networking, vol. 10,

no. 4, pp. 513-528, Aug. 2002.

[5] C. V. Hollot, V. Misra, D. Towsley, and W. bo Gong, “On designing

improved controllers for agm routers support,” in Proceedings of IEEE

Infocom, 2001, pp. 1726-1734.

S. Kunniyur and R. Srikant, “Analysis and design of an adaptive virtual

queue (avq) algorithm for active queue management,” in Proceedings of

ACM SIGCOMM, 2001, pp. 123-134.

[7] B. Braden, D. Clark, J. Crowcroft, and et. al., “Recommendations on

Queue Management and Congestion Avoidance in the Internet,” RFC

2309 (Proposed Standard), 1998.

K. Nichols and V. Jacobson,

piece of the solution to bufferbloat.”

//queue.acm.org/detail.cfm?id=2209336

[9]1 A. Demers, S. Keshav, and S. Shenker, “Analysis and simulaton of
a fair queueing algorihtm,” Journal of Internetworking Research and
Experience, pp. 3-26, Oct. 1990.

[10] R. Pan, B. Prabhakar, F. Bonomi, and R. Olsen, “Approximate fair band-
width allocation: a method for simple and flexible traffic management,”
in Proceedings of 46th Annual Allerton Conference on Communication,
Control and Computing, 2008.

[11] G. Franklin, J. D. Powell, and A. Emami-Naeini, in Feedback Control
of Dynamic Systems, 1995.

[12] R. Pan, B. Prabhakar, and et. al., “Data center bridging - congestion
notification.” [Online]. Available: http://www.ieee802.org/1/pages/802.
lau.html

[13] “NS-2.” [Online]. Available: http://www.isi.edu/nsnam/ns/

[14] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based analysis of a
network of agm routers supporting tcp flows with an application to red,”
in Proceedings OF ACM SIGCOMM, 2000, pp. 151-160.

[15] C. V. Hollot, V. Misra, D. Towsley, and W. bo Gong, “A control theoretic

analysis of red,” in Proceedings of IEEE Infocom, 2001, pp. 1510-1519.

1

[2

[R —

[3

=

[4

=

[6

=

[8

—

“A Modern AQM is just one
[Online]. Available: http:

