
Content-Type: text/html
< draft-ietf-aqm-fq-implementation-02.txt draft-ietf-aqm-fq-implementation-04.txt >

Active Queue Management F. Baker Active Queue Management F. Baker
Internet-Draft R. Pan Internet-Draft R. Pan
Intended status: Informational Cisco Systems Intended status: Informational Cisco Systems
Expires: November 2, 2015 May 1, 2015 Expires: April 24, 2016 October 22, 2015

 On Queuing, Marking, and Dropping On Queuing, Marking, and Dropping
 draft-ietf-aqm-fq-implementation-02 draft-ietf-aqm-fq-implementation-04

Abstract Abstract

 This note discusses implementation strategies for coupled queuing and This note discusses queuing and marking/dropping algorithms. While
mark/drop algorithms. these algorithms may be implemented in a coupled manner, this note

 argues that specifications, measurements, and comparisons should
 decouple the different algorithms and their contributions to system
 behavior.

Status of This Memo Status of This Memo

 This Internet-Draft is submitted in full conformance with the This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet- working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/. Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 2, 2015. This Internet-Draft will expire on April 24, 2016.

Copyright Notice Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved. document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents publication of this document. Please review these documents

skipping to change at page 2, line 26 skipping to change at page 2, line 26
 2.2.3. Calendar Queue Models 7 2.2.3. Calendar Queue Models 7
 2.2.4. Work Conserving Models and Stochastic Fairness 2.2.4. Work Conserving Models and Stochastic Fairness
 Queuing . 9 Queuing . 9
 2.2.5. Non Work Conserving Models and Virtual Clock 9 2.2.5. Non Work Conserving Models and Virtual Clock 9
 3. Queuing, Marking, and Dropping 10 3. Queuing, Marking, and Dropping 10
 3.1. Queuing with Tail Mark/Drop 10 3.1. Queuing with Tail Mark/Drop 10
 3.2. Queuing with CoDel Mark/Drop 11 3.2. Queuing with CoDel Mark/Drop 11
 3.3. Queuing with RED or PIE Mark/Drop 11 3.3. Queuing with RED or PIE Mark/Drop 11
 4. Conclusion . 12 4. Conclusion . 12
 5. IANA Considerations . 12 5. IANA Considerations . 12
 6. Security Considerations 13 6. Security Considerations 12
 7. Acknowledgements . 13 7. Acknowledgements . 13
 8. References . 13 8. References . 13
 8.1. Normative References 13 8.1. Normative References 13
 8.2. Informative References 13 8.2. Informative References 13
 Appendix A. Change Log . 15 Appendix A. Change Log . 15
 Authors' Addresses . 15 Authors' Addresses . 15

1. Introduction 1. Introduction

 In the discussion of Active Queue Management, there has been In the discussion of Active Queue Management, there has been

skipping to change at page 5, line 26 skipping to change at page 5, line 26
2.1.3. GPS Comparisons: unit of measurement 2.1.3. GPS Comparisons: unit of measurement

 And finally, there is the question of what is measured for rate. If And finally, there is the question of what is measured for rate. If
 the only objective is to force packet streams to not dominate each the only objective is to force packet streams to not dominate each
 other, it is sufficient to count packets. However, if the issue is other, it is sufficient to count packets. However, if the issue is
 the bit rate of an SLA, one must consider the sizes of the packets the bit rate of an SLA, one must consider the sizes of the packets
 (the aggregate throughput of a flow, measured in bits or bytes). And (the aggregate throughput of a flow, measured in bits or bytes). And
 if predictable unfairness is a consideration, the value must be if predictable unfairness is a consideration, the value must be
 weighted accordingly. weighted accordingly.

Briscoe discusses measurement in his paper on Byte and Packet [RFC7141] discusses measurement.
 Congestion Notification [RFC7141].

2.2. GPS Approximations 2.2. GPS Approximations

 Carrying the matter further, a queuing algorithm may also be termed Carrying the matter further, a queuing algorithm may also be termed
 "Work Conserving" or "Non Work Conserving". A "work conserving" "Work Conserving" or "Non Work Conserving". A queue in a "work
 algorithm, by definition, is either empty, in which case no attempt conserving" algorithm, by definition, is either empty, in which case
 is being made to dequeue data from it, or contains something, in no attempt is being made to dequeue data from it, or contains
 which case it continuously tries to empty the queue. A work something, in which case the algorithm continuously tries to empty
 conserving queue that contains queued data, at an interface with a the queue. A work conserving queue that contains queued data, at an
 given rate, will deliver data at that rate until it empties. A non- interface with a given rate, will deliver data at that rate until it
 work-conserving queue might stop delivering even though it still empties. A non-work-conserving queue might stop delivering even
 contains data. A common reason for doing this is to impose an though it still contains data. A common reason for doing this is to
 artificial upper bound on a class of traffic that is lower than the impose an artificial upper bound on a class of traffic that is lower
 rate of the underlying physical interface. than the rate of the underlying physical interface.

Diff: draft-ietf-aqm-fq-implementation-02.txt - draft-ietf-aq... http://tools.ietf.org/rfcdiff

1 of 5 10/22/15, 3:55 PM

2.2.1. Definition of a queuing algorithm 2.2.1. Definition of a queuing algorithm

 In the discussion following, we assume a basic definition of a In the discussion following, we assume a basic definition of a
 queuing algorithm. A queuing algorithm has, at minimum: queuing algorithm. A queuing algorithm has, at minimum:

 o Some form of internal storage for the elements kept in the queue, o Some form of internal storage for the elements kept in the queue,

 o If it has multiple internal classifications, o If it has multiple internal classifications,
 * a method for classifying elements,

 * a method for classifying elements,
 * additional storage for the classifier and implied classes, * additional storage for the classifier and implied classes,

 o potentially, a method for creating the queue, o potentially, a method for creating the queue,

 o potentially, a method for destroying the queue, o potentially, a method for destroying the queue,

 o a method, called "enqueue", for placing packets into the queue or o an enqueuing method, for placing packets into the queue or queuing
 queuing system system

 o a method, called "dequeue", for removing packets from the queue or o a dequeuing method, for removing packets from the queue or queuing
 queuing system system

 There may also be other information or methods, such as the ability There may also be other information or methods, such as the ability
 to inspect the queue. It also often has inspectable external to inspect the queue. It also often has inspectable external
 attributes, such as the total volume of packets or bytes in queue, attributes, such as the total volume of packets or bytes in queue,
 and may have limit thresholds, such as a maximum number of packets or and may have limit thresholds, such as a maximum number of packets or
 bytes the queue might hold. bytes the queue might hold.

 For example, a simple FIFO queue has a linear data structure, For example, a simple FIFO queue has a linear data structure,
 enqueues packets at the tail, and dequeues packets from the head. It enqueues packets at the tail, and dequeues packets from the head. It
 might have a maximum queue depth and a current queue depth, might have a maximum queue depth and a current queue depth,
 maintained in packets or bytes. maintained in packets or bytes.

2.2.2. Round Robin Models 2.2.2. Round Robin Models

 One class of implementation approaches, generically referred to as One class of implementation approaches, generically referred to as
 "Weighted Round Robin", implements the structure of the queue as an "Weighted Round Robin" (WRR), implements the structure of the queue
 array or ring of sub-queues associated with flows, for whatever as an array or ring of sub-queues associated with flows, for whatever
 definition of a flow is important. definition of a flow is important.

 On enqueue, the enqueue function classifies a packet and places it The arriving packet must, of course, first be classified. If a hash
 into a simple FIFO sub-queue. is used as a classifier, the modulus of the hash might be used as an

 array index, selecting the sub-queue that the packet will go into.
 One can imagine other classifiers, such as using a Differentiated
 Services Code Point (DSCP) value as an index into an array containing
 the queue number for a flow, or more complex access list
 implementations.

 In any event, a sub-queue contains the traffic for a flow, and data
 is sent from each sub-queue in succession.

 On enqueue, the enqueue method places a classified packet into a
 simple FIFO sub-queue.

 On dequeue, the sub-queues are searched in round-robin order, and On dequeue, the sub-queues are searched in round-robin order, and
 when a sub-queue is identified that contains data, removes a when a sub-queue is identified that contains data, the dequeue method
 specified quantum of data from it. That quantum is at minimum a removes a specified quantum of data from it. That quantum is at
 packet, but it may be more. If the system is intended to maintain a minimum a packet, but it may be more. If the system is intended to
 byte rate, there will be memory between searches of the excess maintain a byte rate, there will be memory between searches of the
 previously dequeued. excess previously dequeued.

 +-+ +-+
 +>|1| +>|1|
 | +-+ | +-+
 | | | |
 | +-+ +-+ | +-+ +-+
 | |1| +>|3| | |1| +>|3|
 | +-+ | +-+ | +-+ | +-+
 | | | | | | | |
 | +-+ +-+ | +-+ | +-+ +-+ | +-+

skipping to change at page 7, line 25 skipping to change at page 7, line 27
 | +-+ | +-+ | +-+ | +-+ | +-+ | +-+
 | A | A | A | A | A | A
 | | | | | | | | | | | |
 ++--++ ++--++ ++--++ ++--++ ++--++ ++--++
 +->| Q |-->| Q |-->| Q |--+ +->| Q |-->| Q |-->| Q |--+
 | +----+ +----+ +----+ | | +----+ +----+ +----+ |
 +----------------------------+ +----------------------------+

 Figure 1: Round Robin Queues Figure 1: Round Robin Queues

If a hash is used as a classifier, the modulus of the hash might be
 used as an array index, selecting the sub-queue that the packet will
 go into. One can imagine other classifiers, such as using a
 Differentiated Services Code Point (DSCP) value as an index into an
 array containing the queue number for a flow, or more complex access
 list implementations.

 In any event, a sub-queue contains the traffic for a flow, and data
 is sent from each sub-queue in succession.

2.2.3. Calendar Queue Models 2.2.3. Calendar Queue Models

 Another class of implementation approaches, generically referred to Another class of implementation approaches, generically referred
 as "Weighted Fair Queues" or "Calendar Queue Implementations", Calendar Queue Implementations [CalendarQueue], implements the

Diff: draft-ietf-aqm-fq-implementation-02.txt - draft-ietf-aq... http://tools.ietf.org/rfcdiff

2 of 5 10/22/15, 3:55 PM

 implements the structure of the queue as an array or ring of sub- structure of the queue as an array or ring of sub-queues (often
 queues (often called "buckets") associated with time or sequence; called "buckets") associated with time or sequence; Each bucket
 Each bucket contains the set of packets, which may be null, intended contains the set of packets, which may be null, intended to be sent
 to be sent at a certain time or following the emptying of the at a certain time or following the emptying of the previous bucket.
 previous bucket. The queue structure includes a look-aside table The queue structure includes a look-aside table that indicates the
 that indicates the current depth (which is to say, the next bucket) current depth (which is to say, the next bucket) of any given class
 of any given class of traffic, which might similarly be identified of traffic, which might similarly be identified using a hash, a DSCP,
 using a hash, a DSCP, an access list, or any other classifier. an access list, or any other classifier. Conceptually, the queues
 Conceptually, the queues each contain zero or more packets from each each contain zero or more packets from each class of traffic. One is
 class of traffic. One is the queue being emptied "now"; the rest are the queue being emptied "now"; the rest are associated with some time
 associated with some time or sequence in the future. or sequence in the future.

 On enqueue, the enqueue function classifies a packet and determines On enqueue, the enqueue method, considering a classified packet,
 the current depth of that class, with a view to scheduling it for determines the current depth of that class with a view to scheduling
 transmission at some time or sequence in the future. If the unit of it for transmission at some time or sequence in the future. If the
 scheduling is a packet and the queuing quantum is one packet per sub- unit of scheduling is a packet and the queuing quantum is one packet
 queue, a burst of packets arrives in a given flow, and at the start per sub-queue, a burst of packets arrives in a given flow, and at the
 the flow has no queued data, the first packet goes into the "next" start the flow has no queued data, the first packet goes into the
 queue, the second into its successor, and so on; if there was some "next" queue, the second into its successor, and so on; if there was
 data in the class, the first packet in the burst would go into the some data in the class, the first packet in the burst would go into
 bucket pointed to by the look-aside table. If the unit of scheduling the bucket pointed to by the look-aside table. If the unit of
 is time, the explanation in Section 2.2.5 might be simplest to scheduling is time, the explanation in Section 2.2.5 might be
 follow, but the bucket selected will be the bucket corresponding to a simplest to follow, but the bucket selected will be the bucket
 given transmission time in the future. A necessary side-effect, corresponding to a given transmission time in the future. A
 memory being finite, is that there exist a finite number of "future" necessary side-effect, memory being finite, is that there exist a
 buckets. If enough traffic arrives to cause a class to wrap, one is finite number of "future" buckets. If enough traffic arrives to
 forced to drop something (tail-drop). cause a class to wrap, one is forced to drop something (tail-drop).

 On dequeue, the buckets are searched at their stated times or in On dequeue, the buckets are searched at their stated times or in
 their stated sequence, and when a bucket is identified that contains their stated sequence, and when a bucket is identified that contains
 data, removes a specified quantum of data from it and, by extension, data, the dequeue method removes a specified quantum of data from it
 from the associated traffic classes. A single bucket might contain and, by extension, from the associated traffic classes. A single
 data from a number of classes simultaneously. bucket might contain data from a number of classes simultaneously.

 +-+ +-+
 +>|1| +>|1|
 | +-+ | +-+
 | | | |
 | +-+ +-+ | +-+ +-+
 | |2| +>|2| | |2| +>|2|
 | +-+ | +-+ | +-+ | +-+
 | | | | | | | |
 | +-+ | +-+ +-+ | +-+ | +-+ +-+

skipping to change at page 9, line 13 skipping to change at page 9, line 7
 end case develops: If the system is draining a given sub-queue, and end case develops: If the system is draining a given sub-queue, and
 the time of the next sub-queue arrives, what should the system do? the time of the next sub-queue arrives, what should the system do?
 One potentially valid line of reasoning would have it continue One potentially valid line of reasoning would have it continue
 delivering the data in the present queue, on the assumption that it delivering the data in the present queue, on the assumption that it
 will likely trade off for time in the next. Another potentially will likely trade off for time in the next. Another potentially
 valid line of reasoning would have it discard any waiting data in the valid line of reasoning would have it discard any waiting data in the
 present queue and move to the next. present queue and move to the next.

2.2.4. Work Conserving Models and Stochastic Fairness Queuing 2.2.4. Work Conserving Models and Stochastic Fairness Queuing

McKenney's Stochastic Fairness Queuing [SFQ] is an example of a work Stochastic Fairness Queuing [SFQ] is an example of a work conserving
 conserving algorithm. This algorithm measures packets, and considers algorithm. This algorithm measures packets, and considers a "flow"
 a "flow" to be an equivalence class of traffic defined by a hashing to be an equivalence class of traffic defined by a hashing algorithm
 algorithm over the source and destination IPv4 addresses. As packets over the source and destination IPv4 addresses. As packets arrive,
 arrive, the enqueue function performs the indicated hash and places the enqueue method performs the indicated hash and places the packet
 the packet into the indicated sub-queue. The dequeue function into the indicated sub-queue. The dequeue method operates as
 operates as described in Section 2.2.2; sub-queues are inspected in described in Section 2.2.2; sub-queues are inspected in round-robin
 round-robin sequence, and if they contain one or more packets, a sequence, and if they contain one or more packets, a packet is
 packet is removed. removed.

Shreedhar's Deficit Round Robin [DRR] model modifies the quanta to Deficit Round Robin [DRR] model modifies the quanta to bytes, and
 bytes, and deals with variable length packets. A sub-queue deals with variable length packets. A sub-queue descriptor contains
 descriptor contains a waiting quantum (the amount intended to be a waiting quantum (the amount intended to be dequeued on the previous
 dequeued on the previous dequeue attempt that was not satisfied), a dequeue attempt that was not satisfied), a per-round quantum (the
 per-round quantum (the sub-queue is intended to dequeue a certain sub-queue is intended to dequeue a certain number of bytes each
 number of bytes each round), and a maximum to permit (some multiple round), and a maximum to permit (some multiple of the MTU). In each
 of the MTU). In each dequeue attempt, the dequeue method sets the dequeue attempt, the dequeue method sets the waiting quantum to the
 waiting quantum to the smaller of the maximum quantum and the sum of smaller of the maximum quantum and the sum of the waiting and
 the waiting and incremental quantum. It then dequeues up to the incremental quantum. It then dequeues up to the waiting quantum, in
 waiting quantum, in bytes, of packets in the queue, and reduces the bytes, of packets in the queue, and reduces the waiting quantum by
 waiting quantum by the number of bytes dequeued. Since packets will the number of bytes dequeued. Since packets will not normally be
 not normally be exactly the size of the quantum, some dequeue exactly the size of the quantum, some dequeue attempts will dequeue
 attempts will dequeue more than others, but they will over time more than others, but they will over time average the incremental
 average the incremental quantum per round if there is data present. quantum per round if there is data present.

McKenny or Shreedhar's models could be implemented as described in [SFQ] and [DRR] could be implemented as described in Section 2.2.3.
 Section 2.2.3. The weakness of a WRR approach is the search time The weakness of a WRR approach is the search time expended when the
 expended when the queuing system is relatively empty, which the queuing system is relatively empty or the overhead of obviating that
 calendar queue model obviates. issue, which the calendar queue model also obviates.

2.2.5. Non Work Conserving Models and Virtual Clock 2.2.5. Non Work Conserving Models and Virtual Clock

Zhang's Virtual Clock [VirtualClock] is an example of a non-work- Virtual Clock [VirtualClock] is an example of a non-work-conserving
 conserving algorithm. It is trivially implemented as described in algorithm. It is trivially implemented as described in
 Section 2.2.3. It associates buckets with intervals in time, with Section 2.2.3. It associates buckets with intervals in time, with
 durations on the order of microseconds to tens of milliseconds. Each durations on the order of microseconds to tens of milliseconds. Each
 flow is assigned a rate in bytes per interval. The flow entry flow is assigned a rate in bytes per interval. The flow entry
 maintains a point in time the "next" packet in the flow should be maintains a point in time the "next" packet in the flow should be
 scheduled. scheduled.

 On enqueue, the method determines whether the "next schedule" time is On enqueue, the method determines whether the "next schedule" time is
 "in the past"; if so, the packet is scheduled "now", and if not, the "in the past"; if so, the packet is scheduled "now", and if not, the
 packet is scheduled at that time. It then calculates the new "next packet is scheduled at that time. It then calculates the new "next

Diff: draft-ietf-aqm-fq-implementation-02.txt - draft-ietf-aq... http://tools.ietf.org/rfcdiff

3 of 5 10/22/15, 3:55 PM

 schedule" time, as the current "next schedule" time plus the length schedule" time, as the current "next schedule" time plus the length

skipping to change at page 12, line 32 skipping to change at page 12, line 27
 To summarize, in Section 2, implementation approaches for several To summarize, in Section 2, implementation approaches for several
 classes of queuing algorithms were explored. Queuing algorithms such classes of queuing algorithms were explored. Queuing algorithms such
 as SFQ, Virtual Clock, and FlowQueue-Codel [I-D.ietf-aqm-fq-codel] as SFQ, Virtual Clock, and FlowQueue-Codel [I-D.ietf-aqm-fq-codel]
 have value in the network, in that they delay packets to enforce a have value in the network, in that they delay packets to enforce a
 rate upper bound or to permit competing flows to compete more rate upper bound or to permit competing flows to compete more
 effectively. ECN Marking and loss are also useful signals if used in effectively. ECN Marking and loss are also useful signals if used in
 a manner that enhances TCP/SCTP operation or restrains unmanaged UDP a manner that enhances TCP/SCTP operation or restrains unmanaged UDP
 data flows. data flows.

 Conceptually, queuing algorithms and a mark/drop algorithms operate Conceptually, queuing algorithms and mark/drop algorithms operate in
 in series, as discussed in Section 3, not as a single algorithm. The series, as discussed in Section 3, not as a single algorithm. The
 observed effects differ: defensive loss protects the intermediate observed effects differ: defensive loss protects the intermediate
 system and provides a signal, AQM mark/drop works to reduce mean system and provides a signal, AQM mark/drop works to reduce mean
 latency, and the scheduling of flows works to modify flow interleave latency, and the scheduling of flows works to modify flow interleave
 and acknowledgement pacing. Certain features like flow isolation are and acknowledgement pacing. Certain features like flow isolation are
 provided by fair queuing related designs, but are not the effect of provided by fair queuing related designs, but are not the effect of
 the mark/drop algorithm. the mark/drop algorithm.

 There is value in implementing and coupling the operation of both There is value in implementing and coupling the operation of both
 queuing algorithms and queue management algorithms, and there is queuing algorithms and queue management algorithms, and there is
 definitely interesting research in this area, but specifications, definitely interesting research in this area, but specifications,

skipping to change at page 13, line 23 skipping to change at page 13, line 18
 discussions in AQM, in which some have pushed an algorithm the discussions in AQM, in which some have pushed an algorithm the
 compare to AQM marking and dropping algorithms, but which includes compare to AQM marking and dropping algorithms, but which includes
 Flow Queuing. Flow Queuing.

8. References 8. References

8.1. Normative References 8.1. Normative References

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, December 1998. Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,

 <http://www.rfc-editor.org/info/rfc2475>.

8.2. Informative References 8.2. Informative References

[CalendarQueue]
 "Calendar queues: a fast 0(1) priority queue
 implementation for the simulation event set problem",
 Communications of the ACM 1988, October 1988,
 <http://www.cs.ucla.edu/~lixia/papers/90sigcomm.pdf>.

 [DRR] Microsoft Corporation and Washington University in St. [DRR] Microsoft Corporation and Washington University in St.
 Louis, "Efficient fair queueing using deficit round Louis, "Efficient fair queueing using deficit round
 robin", ACM SIGCOMM 1995, October 1995, robin", ACM SIGCOMM 1995, October 1995,
 <http://ieeexplore.ieee.org/stamp/ <http://ieeexplore.ieee.org/stamp/
 stamp.jsp?tp=&arnumber=502236>. stamp.jsp?tp=&arnumber=502236>.

 [GPS] Xerox PARC, University of California, Berkeley, and Xerox [GPS] Xerox PARC, University of California, Berkeley, and Xerox
 PARC, "Analysis and simulation of a fair queueing PARC, "Analysis and simulation of a fair queueing
 algorithm", ACM SIGCOMM 1989, September 1989, algorithm", ACM SIGCOMM 1989, September 1989,
 <http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/ <http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/
 data/89/fq.pdf>. data/89/fq.pdf>.

 [I-D.ietf-aqm-codel] [I-D.ietf-aqm-codel]
 Nichols, K., Jacobson, V., McGregor, A., and J. Jana, Nichols, K., Jacobson, V., McGregor, A., and J. Jana,
 "Controlled Delay Active Queue Management", draft-ietf- "Controlled Delay Active Queue Management", draft-ietf-
 aqm-codel-01 (work in progress), April 2015. aqm-codel-01 (work in progress), April 2015.

 [I-D.ietf-aqm-fq-codel] [I-D.ietf-aqm-fq-codel]
 Hoeiland-Joergensen, T., McKenney, P., Taht, D., Gettys, Hoeiland-Joergensen, T., McKenney, P.,
 J., and E. Dumazet, "FlowQueue-Codel", draft-ietf-aqm-fq- dave.taht@gmail.com, d., Gettys, J., and E. Dumazet,
 codel-00 (work in progress), January 2015. "FlowQueue-Codel", draft-ietf-aqm-fq-codel-02 (work in

 progress), October 2015.

 [I-D.ietf-aqm-pie] [I-D.ietf-aqm-pie]
 Pan, R., Natarajan, P., Baker, F., and G. White, "PIE: A Pan, R., Natarajan, P., and F. Baker, "PIE: A Lightweight
 Lightweight Control Scheme To Address the Bufferbloat Control Scheme To Address the Bufferbloat Problem", draft-
 Problem", draft-ietf-aqm-pie-01 (work in progress), March ietf-aqm-pie-02 (work in progress), August 2015.
 2015.

 [NoFair] British Telecom, "Flow rate fairness: dismantling a [NoFair] British Telecom, "Flow rate fairness: dismantling a
 religion", ACM SIGCOMM 2007, April 2007, religion", ACM SIGCOMM 2007, April 2007,
 <http://dl.acm.org/citation.cfm?id=1232926>. <http://dl.acm.org/citation.cfm?id=1232926>.

 [RFC0970] Nagle, J., "On packet switches with infinite storage", RFC [RFC0970] Nagle, J., "On Packet Switches With Infinite Storage",
 970, December 1985. RFC 970, DOI 10.17487/RFC0970, December 1985,

 <http://www.rfc-editor.org/info/rfc970>.

 [RFC2309] Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, [RFC2309] Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering,
 S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G., S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G.,
 Partridge, C., Peterson, L., Ramakrishnan, K., Shenker, Partridge, C., Peterson, L., Ramakrishnan, K., Shenker,
 S., Wroclawski, J., and L. Zhang, "Recommendations on S., Wroclawski, J., and L. Zhang, "Recommendations on
 Queue Management and Congestion Avoidance in the Queue Management and Congestion Avoidance in the
 Internet", RFC 2309, April 1998. Internet", RFC 2309, DOI 10.17487/RFC2309, April 1998,

 <http://www.rfc-editor.org/info/rfc2309>.

 [RFC2990] Huston, G., "Next Steps for the IP QoS Architecture", RFC [RFC2990] Huston, G., "Next Steps for the IP QoS Architecture",
 2990, November 2000. RFC 2990, DOI 10.17487/RFC2990, November 2000,

 <http://www.rfc-editor.org/info/rfc2990>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition

Diff: draft-ietf-aqm-fq-implementation-02.txt - draft-ietf-aq... http://tools.ietf.org/rfcdiff

4 of 5 10/22/15, 3:55 PM

 of Explicit Congestion Notification (ECN) to IP", RFC of Explicit Congestion Notification (ECN) to IP",
 3168, September 2001. RFC 3168, DOI 10.17487/RFC3168, September 2001,

 <http://www.rfc-editor.org/info/rfc3168>.

 [RFC3390] Allman, M., Floyd, S., and C. Partridge, "Increasing TCP's [RFC3390] Allman, M., Floyd, S., and C. Partridge, "Increasing TCP's
 Initial Window", RFC 3390, October 2002. Initial Window", RFC 3390, DOI 10.17487/RFC3390, October

2002, <http://www.rfc-editor.org/info/rfc3390>.

 [RFC5690] Floyd, S., Arcia, A., Ros, D., and J. Iyengar, "Adding [RFC5690] Floyd, S., Arcia, A., Ros, D., and J. Iyengar, "Adding
 Acknowledgement Congestion Control to TCP", RFC 5690, Acknowledgement Congestion Control to TCP", RFC 5690,
 February 2010. DOI 10.17487/RFC5690, February 2010,

 <http://www.rfc-editor.org/info/rfc5690>.

 [RFC6057] Bastian, C., Klieber, T., Livingood, J., Mills, J., and R. [RFC6057] Bastian, C., Klieber, T., Livingood, J., Mills, J., and R.
 Woundy, "Comcast's Protocol-Agnostic Congestion Management Woundy, "Comcast's Protocol-Agnostic Congestion Management
 System", RFC 6057, December 2010. System", RFC 6057, DOI 10.17487/RFC6057, December 2010,

 <http://www.rfc-editor.org/info/rfc6057>.

 [RFC6679] Westerlund, M., Johansson, I., Perkins, C., O'Hanlon, P., [RFC6679] Westerlund, M., Johansson, I., Perkins, C., O'Hanlon, P.,
 and K. Carlberg, "Explicit Congestion Notification (ECN) and K. Carlberg, "Explicit Congestion Notification (ECN)
 for RTP over UDP", RFC 6679, August 2012. for RTP over UDP", RFC 6679, DOI 10.17487/RFC6679, August

2012, <http://www.rfc-editor.org/info/rfc6679>.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis, [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP's Initial Window", RFC 6928, April 2013. "Increasing TCP's Initial Window", RFC 6928,

DOI 10.17487/RFC6928, April 2013,
 <http://www.rfc-editor.org/info/rfc6928>.

 [RFC7141] Briscoe, B. and J. Manner, "Byte and Packet Congestion [RFC7141] Briscoe, B. and J. Manner, "Byte and Packet Congestion
 Notification", BCP 41, RFC 7141, February 2014. Notification", BCP 41, RFC 7141, DOI 10.17487/RFC7141,

 February 2014, <http://www.rfc-editor.org/info/rfc7141>.

 [SFQ] SRI International, "Stochastic Fairness Queuing", IEEE [SFQ] SRI International, "Stochastic Fairness Queuing", IEEE
 Infocom 1990, June 1990, Infocom 1990, June 1990,
 <http://www2.rdrop.com/~paulmck/scalability/paper/ <http://www2.rdrop.com/~paulmck/scalability/paper/
 sfq.2002.06.04.pdf>. sfq.2002.06.04.pdf>.

 [VirtualClock] [VirtualClock]
 Xerox PARC, "Virtual Clock", ACM SIGCOMM 1990, September Xerox PARC, "Virtual Clock", ACM SIGCOMM 1990, September
 1990, 1990,
 <http://www.cs.ucla.edu/~lixia/papers/90sigcomm.pdf>. <http://www.cs.ucla.edu/~lixia/papers/90sigcomm.pdf>.

 End of changes. 37 change blocks.
125 lines changed or deleted 146 lines changed or added

This html diff was produced by rfcdiff 1.42. The latest version is available from http://tools.ietf.org/tools/rfcdiff/

Diff: draft-ietf-aqm-fq-implementation-02.txt - draft-ietf-aq... http://tools.ietf.org/rfcdiff

5 of 5 10/22/15, 3:55 PM

