
< draft-ietf-aqm-fq-implementation.txt  draft-ietf-aqm-fq-implementation-01.txt >
 

Active Queue Management                                         F. Baker  Active Queue Management                                         F. Baker
Internet-Draft                                                    R. Pan  Internet-Draft                                                    R. Pan
Intended status: Informational                             Cisco Systems  Intended status: Informational                             Cisco Systems
Expires: March 22, 2015                               September 18, 2014  Expires: September 12, 2015                               March 11, 2015

 
                   On Queuing, Marking, and Dropping                     On Queuing, Marking, and Dropping
                  draft-ietf-aqm-fq-implementation-00                    draft-ietf-aqm-fq-implementation-01

 
Abstract  Abstract

 
   This note discusses implementation strategies for coupled queuing and     This note discusses implementation strategies for coupled queuing and
   mark/drop algorithms.     mark/drop algorithms.

 
Status of This Memo  Status of This Memo

 
   This Internet-Draft is submitted in full conformance with the     This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.     provisions of BCP 78 and BCP 79.

 
skipping to change at page 1, line 31 skipping to change at page 1, line 31

   Internet-Drafts are working documents of the Internet Engineering     Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute     Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-     working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.     Drafts is at http://datatracker.ietf.org/drafts/current/.

 
   Internet-Drafts are draft documents valid for a maximum of six months     Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any     and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference     time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."     material or to cite them other than as "work in progress."

 
   This Internet-Draft will expire on March 22, 2015.     This Internet-Draft will expire on September 12, 2015.

 
Copyright Notice  Copyright Notice

 
   Copyright (c) 2014 IETF Trust and the persons identified as the     Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.     document authors.  All rights reserved.

 
   This document is subject to BCP 78 and the IETF Trust's Legal     This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents     Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of     (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents     publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect     carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must     to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of     include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as     the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.     described in the Simplified BSD License.

 
Table of Contents  Table of Contents

 
   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2     1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Fair Queuing: Algorithms and History  . . . . . . . . . . . .   2     2.  Fair Queuing: Algorithms and History  . . . . . . . . . . . .   3
     2.1.  Generalized Processor Sharing . . . . . . . . . . . . . .   3       2.1.  Generalized Processor Sharing . . . . . . . . . . . . . .   3
       2.1.1.  GPS Comparisons: transmission quanta  . . . . . . . .   3         2.1.1.  GPS Comparisons: transmission quanta  . . . . . . . .   4
       2.1.2.  GPS Comparisons: flow definition  . . . . . . . . . .   4         2.1.2.  GPS Comparisons: flow definition  . . . . . . . . . .   4
       2.1.3.  GPS Comparisons: unit of measurement  . . . . . . . .   5         2.1.3.  GPS Comparisons: unit of measurement  . . . . . . . .   5
     2.2.  GPS Approximations  . . . . . . . . . . . . . . . . . . .   5       2.2.  GPS Approximations  . . . . . . . . . . . . . . . . . . .   5
       2.2.1.  Definition of a queuing algorithm . . . . . . . . . .   5         2.2.1.  Definition of a queuing algorithm . . . . . . . . . .   5
       2.2.2.  Round Robin Models  . . . . . . . . . . . . . . . . .   6         2.2.2.  Round Robin Models  . . . . . . . . . . . . . . . . .   6
       2.2.3.  Calendar Queue Models . . . . . . . . . . . . . . . .   7         2.2.3.  Calendar Queue Models . . . . . . . . . . . . . . . .   7
       2.2.4.  Work Conserving Models and Stochastic Fairness         2.2.4.  Work Conserving Models and Stochastic Fairness
               Queuing . . . . . . . . . . . . . . . . . . . . . . .   8                 Queuing . . . . . . . . . . . . . . . . . . . . . . .   9
       2.2.5.  Non Work Conserving Models and Virtual Clock  . . . .   9         2.2.5.  Non Work Conserving Models and Virtual Clock  . . . .   9
   3.  Queuing, Marking, and Dropping  . . . . . . . . . . . . . . .  10     3.  Queuing, Marking, and Dropping  . . . . . . . . . . . . . . .  10
     3.1.  Queuing with Tail Mark/Drop . . . . . . . . . . . . . . .  10       3.1.  Queuing with Tail Mark/Drop . . . . . . . . . . . . . . .  10
     3.2.  Queuing with CoDel Mark/Drop  . . . . . . . . . . . . . .  10       3.2.  Queuing with CoDel Mark/Drop  . . . . . . . . . . . . . .  11
     3.3.  Queuing with PIE Mark/Drop  . . . . . . . . . . . . . . .  11       3.3.  Queuing with RED or PIE Mark/Drop . . . . . . . . . . . .  11
   4.  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . .  12     4.  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . .  12
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  12     5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  12
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  12     6.  Security Considerations . . . . . . . . . . . . . . . . . . .  13
   7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  12     7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  13
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  12     8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  13
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .  13       8.1.  Normative References  . . . . . . . . . . . . . . . . . .  13
     8.2.  Informative References  . . . . . . . . . . . . . . . . .  13       8.2.  Informative References  . . . . . . . . . . . . . . . . .  13
   Appendix A.  Change Log . . . . . . . . . . . . . . . . . . . . .  14     Appendix A.  Change Log . . . . . . . . . . . . . . . . . . . . .  15
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  14     Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  15

 
1.  Introduction  1.  Introduction

 
   In the discussion of Active Queue Management, there has been     In the discussion of Active Queue Management, there has been
   discussion of the coupling of queue management algorithms such as     discussion of the coupling of queue management algorithms such as
   Stochastic Fairness Queuing [SFQ], Virtual Clock [VirtualClock], or     Stochastic Fairness Queuing [SFQ], Virtual Clock [VirtualClock], or
   Deficit Round Robin [DRR] with mark/drop algorithms such as CoDel     Deficit Round Robin [DRR] with mark/drop algorithms such as CoDel
   [I-D.nichols-tsvwg-codel] or PIE [I-D.pan-aqm-pie].  In the interest     [I-D.ietf-aqm-codel] or PIE [I-D.ietf-aqm-pie].  In the interest of
   of clarifying the discussion, we document possible implementation     clarifying the discussion, we document possible implementation
   approaches to that, and analyze the possible effects and side-     approaches to that, and analyze the possible effects and side-
   effects.  The language and model derive from the Architecture for     effects.  The language and model derive from the Architecture for
   Differentiated Services [RFC2475].     Differentiated Services [RFC2475].

 
    This note is informational, intended to describe reasonable
    possibilities without constraining outc omes.  This is not so much
    about "right" or "wrong" as it is "what might be reasonable", and
    discusses several possible implementation strategies.  Also, while
    queuing might be implemented in almost any layer, specifically the
    note addresses queues that might be used in the Differentiated
    Services Architecture, and are therefore at or below the IP layer.
                                                                          

2.  Fair Queuing: Algorithms and History  2.  Fair Queuing: Algorithms and History

Diff: draft-ietf-aqm-fq-implementation.txt - draft-ietf-aqm-fq-i... http://tools.ietf.org/rfcdiff

1 of 5 3/11/15, 11:47 AM



 
   There is extensive history in the set of algorithms collectively     There is extensive history in the set of algorithms collectively
   referred to as "Fair Queuing".  The model was initially discussed in     referred to as "Fair Queuing".  The model was initially discussed in
   [RFC0970], which proposed it hypothetically as a solution to the TCP     [RFC0970], which proposed it hypothetically as a solution to the TCP
   Silly Window Syndrome issue in BSD 4.1.  The problem was that, due to     Silly Window Syndrome issue in BSD 4.1.  The problem was that, due to
   a TCP implementation bug, some senders would settle into sending a     a TCP implementation bug, some senders would settle into sending a
   long stream of very short segments, which unnecessarily consumed     long stream of very short segments, which unnecessarily consumed
   bandwidth on TCP and IP headers and occupied short packet buffers,     bandwidth on TCP and IP headers and occupied short packet buffers,
   thereby disrupting competing sessions.  Nagle suggested that if     thereby disrupting competing sessions.  Nagle suggested that if

 
skipping to change at page 3, line 32 skipping to change at page 3, line 40

   streams, called "flows", pass through an interface.  Each flow has a     streams, called "flows", pass through an interface.  Each flow has a
   rate when measured over a period of time; A voice session might, for     rate when measured over a period of time; A voice session might, for
   example, require 64 kbps plus whatever overhead is necessary to     example, require 64 kbps plus whatever overhead is necessary to
   deliver it, and a TCP session might have variable throughput     deliver it, and a TCP session might have variable throughput
   depending on where it is in its evolution.  The premise of     depending on where it is in its evolution.  The premise of
   Generalized Processor Sharing is that on all time scales, the flow     Generalized Processor Sharing is that on all time scales, the flow
   occupies a predictable bit rate, so that if there is enough bandwidth     occupies a predictable bit rate, so that if there is enough bandwidth
   for the flow in the long term, it also lacks nothing in the short     for the flow in the long term, it also lacks nothing in the short
   term.  "All time scales" is obviously untenable in a packet network -     term.  "All time scales" is obviously untenable in a packet network -
   and even in a traditional TDM circuit switch network - because a     and even in a traditional TDM circuit switch network - because a
   timescale shorter than he duration of a packet will only see one     timescale shorter than the duration of a packet will only see one
   packet at a time.  But it provides an ideal for other models to be     packet at a time.  But it provides an ideal for other models to be
   compared against.     compared against.

 
   There are a number of attributes of approximations to the GPS model     There are a number of attributes of approximations to the GPS model
   that bear operational consideration, including at least the     that bear operational consideration, including at least the
   transmission quanta, the definition of a "flow", the unit of     transmission quanta, the definition of a "flow", the unit of
   measurement.  Implementation algorithms have different practical     measurement.  Implementation algorithms have different practical
   impacts as well.     impacts as well.

 
2.1.1.  GPS Comparisons: transmission quanta  2.1.1.  GPS Comparisons: transmission quanta

 
skipping to change at page 4, line 13 skipping to change at page 4, line 24

   order of tens of packets.  If a codec is delivering thirty frames per     order of tens of packets.  If a codec is delivering thirty frames per
   second, it is conceivable that the packets comprising a frame might     second, it is conceivable that the packets comprising a frame might
   be sent as thirty bursts per second, with each burst sent at the     be sent as thirty bursts per second, with each burst sent at the
   interface rate of the camera or other sender.  Similarly, TCP     interface rate of the camera or other sender.  Similarly, TCP
   exchanges have an initial window, common values of which include 1,     exchanges have an initial window, common values of which include 1,
   2, 3, 4 [RFC3390], and 10 [RFC6928], and there are also reports of     2, 3, 4 [RFC3390], and 10 [RFC6928], and there are also reports of
   bursts of 65K bytes at the relevant MSS, which is to say about 45     bursts of 65K bytes at the relevant MSS, which is to say about 45
   packets in one burst, presumably coming from TCP Segment Offload     packets in one burst, presumably coming from TCP Segment Offload
   (TSO, also called TOE) engines.  After that initial burst, TCP     (TSO, also called TOE) engines.  After that initial burst, TCP
   senders commonly send pairs of packets, but may send either smaller     senders commonly send pairs of packets, but may send either smaller
   or larger bursts [RFC5690], and the rate at which they send data is     or larger bursts [RFC5690].
   governed by the arrival rate of acknowledgements from the receiver.  

 
2.1.2.  GPS Comparisons: flow definition  2.1.2.  GPS Comparisons: flow definition

 
   An important engineering trade-off relevant to GPS is the definition     An important engineering trade-off relevant to GPS is the definition
   of a "flow".  A flow is, by definition, a defined data stream.     of a "flow".  A flow is, by definition, a defined data stream.
   Common definitions include:     Common definitions include:

 
   o  Packets in a single transport layer session ("microflow"),     o  Packets in a single transport layer session ("microflow"),
      identified by a five-tuple [RFC2990],        identified by a five-tuple [RFC2990],

 
 

skipping to change at page 5, line 5 skipping to change at page 5, line 12
   sources.  Sorting by source, or in this case by source/destination     sources.  Sorting by source, or in this case by source/destination
   pair, would give each remote peer an upper bound guarantee of 1/N of     pair, would give each remote peer an upper bound guarantee of 1/N of
   the available capacity, which might be distributed very unevenly     the available capacity, which might be distributed very unevenly
   among the local destinations.  Sorting by destination would give each     among the local destinations.  Sorting by destination would give each
   local destination an upper bound guarantee of 2/N of the available     local destination an upper bound guarantee of 2/N of the available
   capacity, which might be distributed very unevenly among the remote     capacity, which might be distributed very unevenly among the remote
   systems and correlated sessions.  Who is one fair to?  In both cases,     systems and correlated sessions.  Who is one fair to?  In both cases,
   they deliver equal service by their definition, but that might not be     they deliver equal service by their definition, but that might not be
   someone else's definition.     someone else's definition.

 
    Flow fairness, and the implications of TCP's congestion avoidance
    algorithms, is discussed extensively in [NoFair].
                                                                          

2.1.3.  GPS Comparisons: unit of measurement  2.1.3.  GPS Comparisons: unit of measurement
 

   And finally, there is the question of what is measured for rate.  If     And finally, there is the question of what is measured for rate.  If
   the sole objective is to force packet streams to not dominate each     the sole objective is to force packet streams to not dominate each
   other, it is sufficient to count packets.  However, if the issue is     other, it is sufficient to count packets.  However, if the issue is
   the bit rate of an SLA, one must consider the sizes of the packets     the bit rate of an SLA, one must consider the sizes of the packets
   (the aggregate throughput of a flow, measured in bits or bytes).  And     (the aggregate throughput of a flow, measured in bits or bytes).  And
   if predictable unfairness is a consideration, the value must be     if predictable unfairness is a consideration, the value must be
   weighted accordingly.     weighted accordingly.

 
    Briscoe discusses measurement in his paper on Byte and Packet
    Congestion Notification [RFC7141].
                                                                          

2.2.  GPS Approximations  2.2.  GPS Approximations
 

   Carrying the matter further, a queuing algorithm may also be termed     Carrying the matter further, a queuing algorithm may also be termed
   "Work Conserving" or "Non Work Conserving".  A "work conserving"     "Work Conserving" or "Non Work Conserving".  A "work conserving"
   algorithm, by definition, is either empty, in which case no attempt     algorithm, by definition, is either empty, in which case no attempt
   is being made to dequeue data from it, or contains something, in     is being made to dequeue data from it, or contains something, in
   which case it continuously tries to empty the queue.  A work     which case it continuously tries to empty the queue.  A work
   conserving queue that contains queued data, at an interface with a     conserving queue that contains queued data, at an interface with a
   given rate, will deliver data at that rate until it empties.  A non-     given rate, will deliver data at that rate until it empties.  A non-
   work-conserving queue might stop delivering even through it still     work-conserving queue might stop delivering even through it still

 
skipping to change at page 5, line 39 skipping to change at page 6, line 4

2.2.1.  Definition of a queuing algorithm  2.2.1.  Definition of a queuing algorithm
 

Diff: draft-ietf-aqm-fq-implementation.txt - draft-ietf-aqm-fq-i... http://tools.ietf.org/rfcdiff

2 of 5 3/11/15, 11:47 AM



   In the discussion following, we assume a basic definition of a     In the discussion following, we assume a basic definition of a
   queuing algorithm.  A queuing algorithm has, at minimum:     queuing algorithm.  A queuing algorithm has, at minimum:

 
   o  Some form of internal storage for the elements kept in the queue,     o  Some form of internal storage for the elements kept in the queue,

 
   o  If it has multiple internal classifications,     o  If it has multiple internal classifications,

 
      *  a method for classifying elements,        *  a method for classifying elements,
                                                                          
      *  additional storage for the classifier and implied classes,        *  additional storage for the classifier and implied classes,

 
   o  a method for creating the queue,     o  potentially, a method for creating the queue,

 
   o  a method for destroying the queue,     o  potentially, a method for destroying the queue,

 
   o  a method, called "enqueue", for placing packets into the queue or     o  a method, called "enqueue", for placing packets into the queue or
      queuing system        queuing system

 
   o  a method, called "dequeue", for removing packets from the queue or     o  a method, called "dequeue", for removing packets from the queue or
      queuing system        queuing system

 
   There may also be other information or methods, such as the ability     There may also be other information or methods, such as the ability
   to inspect the queue.  It also often has inspectable external     to inspect the queue.  It also often has inspectable external
   attributes, such as the total volume of packets or bytes in queue,     attributes, such as the total volume of packets or bytes in queue,

 
skipping to change at page 6, line 20 skipping to change at page 6, line 31

 
   For example, a simple FIFO queue has a linear data structure,     For example, a simple FIFO queue has a linear data structure,
   enqueues packets at the tail, and dequeues packets from the head.  It     enqueues packets at the tail, and dequeues packets from the head.  It
   might have a maximum queue depth and a current queue depth,     might have a maximum queue depth and a current queue depth,
   maintained in packets or bytes.     maintained in packets or bytes.

 
2.2.2.  Round Robin Models  2.2.2.  Round Robin Models

 
   One class of implementation approaches, generically referred to as     One class of implementation approaches, generically referred to as
   "Weighted Round Robin", implements the structure of the queue as an     "Weighted Round Robin", implements the structure of the queue as an
   array or ring of queues associated with flows, for whatever     array or ring of sub-queues associated with flows, for whatever
   definition of a flow is important.     definition of a flow is important.

 
   On enqueue, the enqueue function classifies a packet and places it     On enqueue, the enqueue function classifies a packet and places it
   into a simple FIFO sub-queue.     into a simple FIFO sub-queue.

 
   On dequeue, the sub-queues are searched in round-robin order, and     On dequeue, the sub-queues are searched in round-robin order, and
   when a sub-queue is identified that contains data, removes a     when a sub-queue is identified that contains data, removes a
   specified quantum of data from it.  That quantum is at minimum a     specified quantum of data from it.  That quantum is at minimum a
   packet, but it may be more.  If the system is intended to maintain a     packet, but it may be more.  If the system is intended to maintain a
   byte rate, there will be memory between searches of the excess     byte rate, there will be memory between searches of the excess

 
skipping to change at page 7, line 19 skipping to change at page 7, line 39

   array containing the queue number for a flow, or more complex access     array containing the queue number for a flow, or more complex access
   list implementations.     list implementations.

 
   In any event, a sub-queue contains the traffic for a flow, and data     In any event, a sub-queue contains the traffic for a flow, and data
   is sent from each sub-queue in succession.     is sent from each sub-queue in succession.

 
2.2.3.  Calendar Queue Models  2.2.3.  Calendar Queue Models

 
   Another class of implementation approaches, generically referred to     Another class of implementation approaches, generically referred to
   as "Weighted Fair Queues" or "Calendar Queue Implementations",     as "Weighted Fair Queues" or "Calendar Queue Implementations",
   implements the structure of the queue as an array or ring of queues     implements the structure of the queue as an array or ring of sub-
   (often called "buckets") associated with time or sequence; Each     queues (often called "buckets") associated with time or sequence;
   bucket contains the set of packets, which may be null, intended to be     Each bucket contains the set of packets, which may be null, intended
   sent at a certain time or following the emptying of the previous     to be sent at a certain time or following the emptying of the
   bucket.  The queue structure includes a look-aside table that     previous bucket.  The queue structure includes a look-aside table
   indicates the current depth (which is to say, the next bucket) of any     that indicates the current depth (which is to say, the next bucket)
   given class of traffic, which might similarly be identified using a     of any given class of traffic, which might similarly be identified
   hash, a DSCP, an access list, or any other classifier.  Conceptually,     using a hash, a DSCP, an access list, or any other classifier.
   the queues each contain zero or more packets from each class of     Conceptually, the queues each contain zero or more packets from each
   traffic.  One is the queue being emptied "now"; the rest are     class of traffic.  One is the queue being emptied "now"; the rest are
   associated with some time or sequence in the future.     associated with some time or sequence in the future.

 
   On enqueue, the enqueue function classifies a packet and determines     On enqueue, the enqueue function classifies a packet and determines
   the current depth of that class, with a view to scheduling it for     the current depth of that class, with a view to scheduling it for
   transmission at some time or sequence in the future.  If the unit of     transmission at some time or sequence in the future.  If the unit of
   scheduling is a packet and the queuing quantum is one packet per sub-     scheduling is a packet and the queuing quantum is one packet per sub-
   queue, a burst of packets arrives in a given flow, and at the start     queue, a burst of packets arrives in a given flow, and at the start
   the flow has no queued data, the first packet goes into the "next"     the flow has no queued data, the first packet goes into the "next"
   queue, the second into its successor, and so on; if there was some     queue, the second into its successor, and so on; if there was some
   data in the class, the first packet in the burst would go into the     data in the class, the first packet in the burst would go into the

 
skipping to change at page 10, line 43 skipping to change at page 11, line 15

   o  Ack Clocking, pacing the sender to send at approximately the rate     o  Ack Clocking, pacing the sender to send at approximately the rate
      it can deliver data to the receiver, and        it can deliver data to the receiver, and

 
   o  Defensive loss, when a sender sends faster than available capacity     o  Defensive loss, when a sender sends faster than available capacity
      (such as by probing network capacity when fully utilizing that        (such as by probing network capacity when fully utilizing that
      capacity) and overburdens a queue.        capacity) and overburdens a queue.

 
3.2.  Queuing with CoDel Mark/Drop  3.2.  Queuing with CoDel Mark/Drop

 
   In any case wherein a queuing algorithm is used along with CoDel     In any case wherein a queuing algorithm is used along with CoDel
   [I-D.nichols-tsvwg-codel], the sequence of events is that a packet is     [I-D.ietf-aqm-codel], the sequence of events is that a packet is
   time-stamped, enqueued, dequeued, compared to a subsequent reading of     time-stamped, enqueued, dequeued, compared to a subsequent reading of
   the clock, and then acted on, whether by dropping it, marking and     the clock, and then acted on, whether by dropping it, marking and
   forwarding it, or simply forwarding it.  This is to say that the only     forwarding it, or simply forwarding it.  This is to say that the only
   drop algorithm inherent in queuing is the defensive drop when the     drop algorithm inherent in queuing is the defensive drop when the
   queue's resources are overrun.  However, the intention of marking or     queue's resources are overrun.  However, the intention of marking or
   dropping is to signal to the sender much earlier, when a certain     dropping is to signal to the sender much earlier, when a certain

Diff: draft-ietf-aqm-fq-implementation.txt - draft-ietf-aqm-fq-i... http://tools.ietf.org/rfcdiff

3 of 5 3/11/15, 11:47 AM



   amount of delay has been observed.  In a FIFO+CoDel, Virtual     amount of delay has been observed.  In a FIFO+CoDel, Virtual
   Clock+CoDel, or FlowQueue-Codel     Clock+CoDel, or FlowQueue-Codel [I-D.ietf-aqm-fq-codel]
                                                                             implementation, the queuing algorithm is completely separate from the
   [I-D.hoeiland-joergensen-aqm-fq-codel] implementation, the queuing     AQM algorithm.  Using them in series results in four signals to the
   algorithm is completely separate from the AQM algorithm.  Using them     sender:
   in series results in four signals to the sender:  

 
   o  Ack Clocking, pacing the sender to send at approximately the rate     o  Ack Clocking, pacing the sender to send at approximately the rate
      it can deliver data to the receiver through a queue,        it can deliver data to the receiver through a queue,

 
   o  Lossless signaling that a certain delay threshold has been     o  Lossless signaling that a certain delay threshold has been
      reached, if ECN [RFC3168][RFC6679] is in use,        reached, if ECN [RFC3168][RFC6679] is in use,

 
   o  Intentional signaling via loss that a certain delay threshold has     o  Intentional signaling via loss that a certain delay threshold has
      been reached, if ECN is not in use, and        been reached, if ECN is not in use, and

 
   o  Defensive loss, when a sender sends faster than available capacity     o  Defensive loss, when a sender sends faster than available capacity
      (such as by probing network capacity when fully utilizing that        (such as by probing network capacity when fully utilizing that
      capacity) and overburdens a queue.        capacity) and overburdens a queue.

 
3.3.  Queuing with PIE Mark/Drop  3.3.  Queuing with RED or PIE Mark/Drop

 
   In any case wherein a queuing algorithm is used along with PIE     In any case wherein a queuing algorithm is used along with PIE
   [I-D.pan-aqm-pie], RED, or other such algorithms, the sequence of     [I-D.ietf-aqm-pie], RED [RFC2309], or other such algorithms, the
   events is that a queue is inspected, a packet is dropped, marked, or     sequence of events is that a queue is inspected, a packet is dropped,
   left unchanged, enqueued, dequeued, compared to a subsequent reading     marked, or left unchanged, enqueued, dequeued, compared to a
   of the clock, and then forwarded on.  This is to say that the AQM     subsequent reading of the clock, and then forwarded on.  This is to
   Mark/Drop Algorithm precedes enqueue; if it has not been effective     say that the AQM Mark/Drop Algorithm precedes enqueue; if it has not
   and as a result the queue is out of resources anyway, the defensive     been effective and as a result the queue is out of resources anyway,
   drop algorithm steps in, and failing that, the queue operates in     the defensive drop algorithm steps in, and failing that, the queue
   whatever way it does.  Hence, in a FIFO+PIE, SFQ+PIE, or Virtual     operates in whatever way it does.  Hence, in a FIFO+PIE, SFQ+PIE, or
   Clock+PIE implementation, the queuing algorithm is again completely     Virtual Clock+PIE implementation, the queuing algorithm is again
   separate from the AQM algorithm.  Using them in series results in     completely separate from the AQM algorithm.  Using them in series
   four signals to the sender:     results in four signals to the sender:

 
   o  Ack Clocking, pacing the sender to send at approximately the rate     o  Ack Clocking, pacing the sender to send at approximately the rate
      it can deliver data to the receiver through a queue,        it can deliver data to the receiver through a queue,

 
   o  Lossless signaling that a queue depth that corresponds to a     o  Lossless signaling that a queue depth that corresponds to a
      certain delay threshold has been reached, if ECN is in use,        certain delay threshold has been reached, if ECN is in use,

 
   o  Intentional signaling via loss that a queue depth that corresponds     o  Intentional signaling via loss that a queue depth that corresponds
      to a certain delay threshold has been reached, if ECN is not in        to a certain delay threshold has been reached, if ECN is not in
      use, and        use, and

 
   o  Defensive loss, when a sender sends faster than available capacity     o  Defensive loss, when a sender sends faster than available capacity
      (such as by probing network capacity when fully utilizing that        (such as by probing network capacity when fully utilizing that
      capacity) and overburdens a queue.        capacity) and overburdens a queue.

 
4.  Conclusion  4.  Conclusion

 
   To summarize, in Section 2, implementation approaches for several     To summarize, in Section 2, implementation approaches for several
   classes of queueing algorithms were explored.  Queuing algorithms     classes of queueing algorithms were explored.  Queuing algorithms
   such as SFQ, Virtual Clock, and FlowQueue-Codel     such as SFQ, Virtual Clock, and FlowQueue-Codel
   [I-D.hoeiland-joergensen-aqm-fq-codel] have value in the network, in     [I-D.ietf-aqm-fq-codel] have value in the network, in that they delay
   that they delay packets to enforce a rate upper bound or to permit     packets to enforce a rate upper bound or to permit competing flows to
   competing flows to compete more effectively.  ECN Marking and loss     compete more effectively.  ECN Marking and loss are also useful
   are also useful signals if used in a manner that enhances TCP/SCTP     signals if used in a manner that enhances TCP/SCTP operation or
   operation or restrains unmanaged UDP data flows.     restrains unmanaged UDP data flows.

 
   Conceptually, queuing algoritms and a mark/drop algorithms operate in     Conceptually, queuing algoritms and a mark/drop algorithms operate in
   series, as discussed in Section 3, not as a single algorithm.  The     series, as discussed in Section 3, not as a single algorithm.  The
   observed effects differ: defensive loss protects the intermediate     observed effects differ: defensive loss protects the intermediate
   system and provides a signal, AQM mark/drop works to reduce mean     system and provides a signal, AQM mark/drop works to reduce mean
   latency, and the scheduling of flows works to modify flow interleave     latency, and the scheduling of flows works to modify flow interleave
   and acknowledgement pacing.  Certain features like flow isolation are     and acknowledgement pacing.  Certain features like flow isolation are
   provided by fair queueing related designs, but are not the effect of     provided by fair queueing related designs, but are not the effect of
   the mark/drop algorithm.     the mark/drop algorithm.

 
   The authors think highly of queuing algorithms, which can ensure     There is value in implementing and coupling the operation of both
   certain behaviors, but in this context believe that coupling queuing     queueing algorithms and queue management algorithms, and there is
   and marking or dropping in an AQM (mark/drop) discussion is     definitely interesting research in this area, but specifications,
   unwarranted and masks issues with the mark/drop algorithm in     measurements, and comparisons should decouple the different
   question.     algorithms and their contributions to system behavior.

 
5.  IANA Considerations  5.  IANA Considerations

 
   This memo asks the IANA for no new parameters.     This memo asks the IANA for no new parameters.

 
6.  Security Considerations  6.  Security Considerations

 
   This memo adds no new security issues; it observes on implementation     This memo adds no new security issues; it observes on implementation
   strategies for Diffserv implementation.     strategies for Diffserv implementation.

 
 

skipping to change at page 13, line 21 skipping to change at page 13, line 36
 

   [DRR]      Microsoft Corporation and Washington University in St.     [DRR]      Microsoft Corporation and Washington University in St.
              Louis, "Efficient fair queueing using deficit round                Louis, "Efficient fair queueing using deficit round
              robin", ACM SIGCOMM 1995, October 1995,                robin", ACM SIGCOMM 1995, October 1995,
              <http://ieeexplore.ieee.org/stamp/                <http://ieeexplore.ieee.org/stamp/
              stamp.jsp?tp=&arnumber=502236>.                stamp.jsp?tp=&arnumber=502236>.

 
   [GPS]      Xerox PARC, University of California, Berkeley, and Xerox     [GPS]      Xerox PARC, University of California, Berkeley, and Xerox
              PARC, "Analysis and simulation of a fair queueing                PARC, "Analysis and simulation of a fair queueing
              algorithm", ACM SIGCOMM 1989, September 1989,                algorithm", ACM SIGCOMM 1989, September 1989,
              <http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/                <http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/
              data/89/fq.pdf>.                89/fq.pdf>.

Diff: draft-ietf-aqm-fq-implementation.txt - draft-ietf-aqm-fq-i... http://tools.ietf.org/rfcdiff

4 of 5 3/11/15, 11:47 AM



 
   [I-D.hoeiland-joergensen-aqm-fq-codel]     [I-D.ietf-aqm-codel]

               Nichols, K., Jacobson, V., McGregor, A., and J. Iyengar,
               "Controlled Delay Active Queue Management", draft-ietf-
               aqm-codel-00 (work in progress), October 2014.
 
    [I-D.ietf-aqm-fq-codel]

              Hoeiland-Joergensen, T., McKenney, P., Taht, D., Gettys,                Hoeiland-Joergensen, T., McKenney, P., Taht, D., Gettys,
              J., and E. Dumazet, "FlowQueue-Codel", draft-hoeiland-                J., and E. Dumazet, "FlowQueue-Codel", draft-ietf-aqm-fq-
              joergensen-aqm-fq-codel-00 (work in progress), March 2014.                codel-00 (work in progress), January 2015.

 
   [I-D.nichols-tsvwg-codel]     [I-D.ietf-aqm-pie]
              Nichols, K. and V. Jacobson, "Controlled Delay Active                Pan, R., Natarajan, P., Baker, F., and G. White, "PIE: A
              Queue Management", draft-nichols-tsvwg-codel-02 (work in                Lightweight Control Scheme To Address the Bufferbloat
              progress), March 2014.                Problem", draft-ietf-aqm-pie-00 (work in progress),

               October 2014.
 

   [I-D.pan-aqm-pie]     [NoFair]   British Telecom, "Flow rate fairness: dismantling a
              Pan, R., "PIE: A Lightweight Control Scheme To Address the                religion", ACM SIGCOMM 2007, April 2007,
              Bufferbloat Problem", draft-pan-aqm-pie-02 (work in                <http://dl.acm.org/citation.cfm?id=1232926>.
              progress), September 2014.  

 
   [RFC0970]  Nagle, J., "On packet switches with infinite storage", RFC     [RFC0970]  Nagle, J., "On packet switches with infinite storage", RFC
              970, December 1985.                970, December 1985.

 
    [RFC2309]  Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering,
               S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G.,
               Partridge, C., Peterson, L., Ramakrishnan, K., Shenker,
               S., Wroclawski, J., and L. Zhang, "Recommendations on
               Queue Management and Congestion Avoidance in the
               Internet", RFC 2309, April 1998.
                                                                          

   [RFC2990]  Huston, G., "Next Steps for the IP QoS Architecture", RFC     [RFC2990]  Huston, G., "Next Steps for the IP QoS Architecture", RFC
              2990, November 2000.                2990, November 2000.

 
   [RFC3168]  Ramakrishnan, K., Floyd, S., and D. Black, "The Addition     [RFC3168]  Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
              of Explicit Congestion Notification (ECN) to IP", RFC                of Explicit Congestion Notification (ECN) to IP", RFC
              3168, September 2001.                3168, September 2001.

 
   [RFC3390]  Allman, M., Floyd, S., and C. Partridge, "Increasing TCP's     [RFC3390]  Allman, M., Floyd, S., and C. Partridge, "Increasing TCP's
              Initial Window", RFC 3390, October 2002.                Initial Window", RFC 3390, October 2002.

 
 

skipping to change at page 14, line 20 skipping to change at page 14, line 50
              Woundy, "Comcast's Protocol-Agnostic Congestion Management                Woundy, "Comcast's Protocol-Agnostic Congestion Management
              System", RFC 6057, December 2010.                System", RFC 6057, December 2010.

 
   [RFC6679]  Westerlund, M., Johansson, I., Perkins, C., O'Hanlon, P.,     [RFC6679]  Westerlund, M., Johansson, I., Perkins, C., O'Hanlon, P.,
              and K. Carlberg, "Explicit Congestion Notification (ECN)                and K. Carlberg, "Explicit Congestion Notification (ECN)
              for RTP over UDP", RFC 6679, August 2012.                for RTP over UDP", RFC 6679, August 2012.

 
   [RFC6928]  Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,     [RFC6928]  Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
              "Increasing TCP's Initial Window", RFC 6928, April 2013.                "Increasing TCP's Initial Window", RFC 6928, April 2013.

 
    [RFC7141]  Briscoe, B. and J. Manner, "Byte and Packet Congestion
               Notification", BCP 41, RFC 7141, February 2014.
                                                                          

   [SFQ]      SRI International, "Stochastic Fairness Queuing", IEEE     [SFQ]      SRI International, "Stochastic Fairness Queuing", IEEE
              Infocom 1990, June 1990,                Infocom 1990, June 1990, <http://www2.rdrop.com/~paulmck/
              <http://www2.rdrop.com/~paulmck/scalability/paper/                scalability/paper/sfq.2002.06.04.pdf>.
              sfq.2002.06.04.pdf>.  

 
   [VirtualClock]     [VirtualClock]
              Xerox PARC, "Virtual Clock", ACM SIGCOMM 1990, September                Xerox PARC, "Virtual Clock", ACM SIGCOMM 1990, September
              1990,                1990,
              <http://www.cs.ucla.edu/~lixia/papers/90sigcomm.pdf>.                <http://www.cs.ucla.edu/~lixia/papers/90sigcomm.pdf>.

 
Appendix A.  Change Log  Appendix A.  Change Log

 
   Initial Version:  June 2014     Initial Version:  June 2014

 
 

 End of changes. 35 change blocks. 
77 lines changed or deleted 102 lines changed or added

This html diff was produced by rfcdiff 1.42. The latest version is available from http://tools.ietf.org/tools/rfcdiff/ 

X-Generator: pyht 0.35

Diff: draft-ietf-aqm-fq-implementation.txt - draft-ietf-aqm-fq-i... http://tools.ietf.org/rfcdiff

5 of 5 3/11/15, 11:47 AM


