
 

 

Key Recovery Attacks on AES-GCM-SIV 

Summary of Attacks 

The Crypto Forum Research Group (CFRG) is currently considering the AES-GCM-SIV authenticated encryption 

scheme [1] as an Internet Engineering Task Force (IETF) standard. In this scheme the master key K is 128 bits or 

256 bits in length. Each message uses a 128-bit nonce N, which is used with the master key to generate a record 

authentication key H (128 bits) and a record encryption key L (128 or 256 bits). While nonces should be unique, 

AES-GCM-SIV is claimed to have some level of nonce misuse resistance. Up to 232 messages are theoretically 

allowed to be encrypted under a fixed key and nonce. 

In this section we summarize the resource requirements for three cryptanalytic attacks on AES-GCM-SIV under a 

fixed master key. Details of the attacks appear in later sections. The attacks subexhaustively recover the record 

encryption key and record authentication key for multiple nonces. With L and H in hand for a given N, the attacker 

(despite not knowing K) can encrypt/decrypt any messages that use N, and can also forge arbitrary messages 

under N. The first and second attacks are birthday-style attacks which search for random collisions in keys. Both 

attacks exploit the fact that for each nonce a different record encryption key is used. The third attack, which is 

only applicable to 256-bit keys, exploits both the key generation method and the fact that AES is likely to have at 

least one fixed point. Furthermore, the key generation method for 256-bit keys has the property that if a record 

encryption and authentication key pair (L,H) is compromised, then many additional key pairs can be recovered, 

each with one query and only 128 bits of work. 

The first attack only requires a nonce to be repeated at most two times. The attack involves two parameters, s 

and t, where s > t ≥ 0. Table 1 shows the resource requirements for the attack for various values of (s,t), assuming 

K is 128 bits in length. 256-bit keys can be exploited as well; while the work increases by a factor of 2128, 

significantly more (L,H) pairs can be recovered because of the property mentioned above. 

 
 

    

(s,t) queries 
(2s+2t+1) 

memory  
(2s) 

work 
(2128-s+t) 

forgery attempts 
(2t) 

recovered keys 
(2t L’s, 2t+1 H’s) 

(1,0) 22 21 2127 1 (1,2) 

(16,0) 216 216 2112 1 (1,2) 

(32,0) 232 232 296 1 (1,2) 

(32,16) 232 232 2112 216 (216, 217) 

(48,0) 248 248 280 1 (1,2) 

(48,32) 248 248 2112 232 (232,233) 

(64,0) 264 264 264 1 (1,2) 

(64,48) 264 264 2112 248 (248,249) 

     
 

Table 1: Resource requirements for first attack on AES-GCM-SIV with a 128-bit key 

The second attack does not require any nonces to be repeated, but has significantly larger data and work 

requirements. It involves two parameters, m and n, where m ≥ n > 0. Table 2 shows the resource requirements 

for the attack for various values of (m,n), assuming K is 128 bits in length. In the table, we use the expression Q[x,r] 

≈ (r!)1/r Γ(1+1/r) x1-1/r, where Γ is the gamma function. 256-bit keys can be exploited as well; while the work 

increases by a factor of 2128, significantly more (L,H) pairs can be recovered, again, because of the property 

mentioned previously. 



 

 

 
 

   

(m,n) queries/memory 
Q[2127,2m] 

work 
(2128-n) 

forgery attempts 
(2m-n) 

recovered keys 
(2m-n L’s, 2m-n+1 H’s) 

(1,1) 263.8 2127 1 (1,2) 

(2,1) 296.3 2127 21 (21,22) 

(2,2) 296.3 2126 1 (1,2) 

(3,1) 2113.0 2127 22 (22,23) 

(3,3) 2113.0 2125 1 (1,2) 

(4,1) 2121.8 2127 23 (23,24) 

(4,4) 2121.8 2124 1 (1,2) 

(5,1) 2126.7 2127 24 (24,25) 

(5,5) 2126.7 2123 1 (1,2) 

    
 

Table 2: Resource requirements for second attack on AES-GCM-SIV with a 128-bit key 

The third attack does not require any nonces to be repeated, but is only applicable to 256-bit keys. It has an 

extremely large data requirement (2128 queries), but unlike the first two attacks for 256-bit keys, the work is ≤ 2128 

(i.e., the work is no more than the square-root of the work to exhaust). 

These attacks assume that all of the required data is collected under a single master key. It should be stressed, 

however, that limiting the amount of data encrypted under a single master key or changing the master key more 

frequently does not reduce the success probability or increase the cost of these attacks. If the total amount of 

required data is collected across multiple master keys, the attacks will still succeed in recovering (L,H,N) triples 

under one or more of these master keys. 

Description of AES-GCM-SIV 

We give a brief description of AES-GCM-SIV as specified in [1]. Let N denote a 128-bit nonce and K denote a 128-

bit or 256-bit AES key. Let P = P0, P1, ... denote a plaintext message and A = A0, A1, … denote additional 

authenticated data, divided into 128-bit blocks. P and A are padded with zero bits until they are each a multiple 

of 16 bytes. Let EK(X) denote the AES encryption of a 128-bit block X with key K. Let + denote the bitwise XOR 

operation, & denote the bitwise AND operation, and || denote concatenation. First, compute a 128-bit record 

authentication key H = EK(N). Then, if K is 128 bits in length, compute a 128-bit record encryption key L = EK(H). 

Otherwise compute a 256-bit record encryption key L = EK(H)||EK(EK(H)). The 128-bit tag is computed as 

T = EL(POLYVAL(H,A,P,l) & 0x7fffffffffffffff), 

where l = len(P)||len(A) is a 128-bit length block comprised of the 64-bit encodings of the bit lengths of A and P 

(before padding) and POLYVAL is a GF(2128)-based polynomial authenticator similar to the GHASH authenticator 

used in GCM. Let T95 denote the 95 bits of T to the immediate right of the most significant bit, T32 denote the low 

32 bits of T, +32 denote addition modulo 232, and k denote a 32-bit counter starting at 0. The kth block of ciphertext 

is computed via counter mode as 

Ck = Pk + EL(1||T95||(T32 +32 k)) 

for 0 ≤ k < 232. The last ciphertext block is truncated to the length of the last (unpadded) plaintext block. The 

ciphertext blocks and tag are transmitted to the receiver along with the nonce and the (unpadded) additional 

authenticated data. 



 

 

First Attack (128-bit Keys) 

In this section we describe the attack for the case of 128-bit keys K. The attack consists of a data collection phase 

and an offline phase. Fix both the additional authenticated data and the plaintext to be the empty string. That is, 

A = ø and P = ø. These are valid input strings for AES-GCM-SIV, and a test vector of this type is given in [1] for each 

of the two key sizes. Since the lengths of these strings are already a multiple of 16 bytes, namely 0 bytes, no 

padding is performed. Moreover, the length block consists of 128 zero bits, that is, l = 0128. 

For the data collection phase of the attack we ask for the tags associated with (A,P) = (ø,ø) under 2s distinct nonces 

Ni. Since each of A and P remains the empty string after padding, and since l = 0128, it follows that 

POLYVAL(Hi,A,P,l) = POLYVAL(Hi,ø,ø,0128) = 0128, 

regardless of the value of the record authentication key Hi = EK(Ni). (A test vector for (A,P) = (ø,ø) is given in [1] for 

each of the two key sizes, which confirms this.) The tags are generated by setting the most significant bit to 0 and 

encrypting the result with the record encryption key Li = EK(Hi). That is, Ti = ELi(0
128). We store the 2s tag/nonce 

pairs (Ti,Ni) in a table (sorted on the tags). In the offline phase of the attack we compute Tj = ELj(0
128) for 2128-s+t 

distinct values of Lj (with s > t). We expect 2s+(128-s+t)-128 = 2t distinct matches of the form Li = EK(EK(Ni)) = Lj, and we 

can detect these events by observing a match on the corresponding tags. A (causal) match on a tag tells us that Lj 

is the record encryption key for nonce Ni. 

Note that we expect 2t random matches as well. Together, the sets of random and causal matches could involve 

up to 2t+1 distinct nonces. To distinguish the causal matches from the random matches, we next ask for the 

encryptions of (A,P) under these nonces, where A is arbitrary and P ≠ ø. Thus, up to 2t+1 nonces are repeated a 

total of two times in this attack. Since P ≠ ø, we can use the counter mode equations associated with the 2t+1 

queries as part of a secondary test, thereby eliminating the 2t random matches. Thus far, this attack requires 2s + 

2t+1 queries, 2s memory, and 2128-s+t work to recover 2t record encryption keys. (To avoid adaptive queries, we 

could instead query (A,P) for P ≠ ø under the 2s original nonces at the outset, along with the original 2s queries. 

This second set of queries would be stored in another table, indexed by the nonce, so that once a match on a tag 

is encountered in the first table, the corresponding nonce can be used to look up the related query in the second 

table. In this variant 2s+1 queries (and memory) are needed, and 2s nonces are repeated a total of two times in the 

attack.) 

Once we recover a record encryption key L for some N, it is straightforward to recover H. We use the query under 

N above where A is arbitrary and P ≠ ø. Recall that the most significant bit of the input POLYVAL(H,A,P,l) to EL is 

set to 0 when computing the tag. Using the known value of L, we decrypt the tag T associated with N and (A,P). 

This gives us the low 127 bits of the output of a GF(2128) polynomial in H with known coefficients. If we correctly 

guess the high bit of the output of this polynomial, the record authentication key is among its roots. In fact, if we 

choose A = ø and P = 0128 in the above query, then we obtain a degree 1 equation in H and two candidates for H 

(one for each guess of the high bit of the output). Given L and two candidates for H, we can recover H uniquely 

using a single forgery attempt under the nonce N. Note that once H is recovered, we know that Hʹ = L is the record 

authentication key for nonce Nʹ = H. Thus, we obtain an additional record authentication key. Even though we 

don’t know the record encryption key for nonce Nʹ, we can still forge messages under nonce Nʹ (given matched 

plaintext/ciphertext under this nonce). Altogether, this attack uses 2s + 2t+1 queries, 2s memory, 2t forgery 

attempts, and 2128-s+t work to recover the record encryption and authentication keys for 2t nonces and the record 

authentication keys for an additional 2t nonces. 



 

 

First Attack (256-bit Keys) 

The previous attack is similar for 256-bit keys. We describe the basic attack first and then improve it by exploiting 

the property of the 256-bit key generation method alluded to earlier. The basic attack requires 2 × 2s 

queries/memory, 2t forgery attempts, and 2256-s+t work to recover the record encryption and authentication keys 

for 2t nonces and the record authentication keys for an additional 2t+1 nonces. The number of queries needed is 

due to the fact that 2128+t random matches are expected. To account for this, at the outset we query two (A,P) 

pairs for each nonce, where the first pair is (A,P) = (ø,ø) and the second pair uses a P with at least two 128-bit 

blocks. Then we use the counter mode equations associated with the second pair as part of a secondary test to 

eliminate the 2128+t random matches. Note also that the number of additional record authentication keys 

recovered by the attack has increased from 2t to 2t+1. This is due to the fact that once (L,H) is recovered for some 

nonce N, we immediately obtain the record authentication key for two additional nonces. In particular, since H = 

EK(N) and L = EK(H)||EK(EK(H)), we obtain Hʹ = EK(H) as the record authentication key for nonce Nʹ = H and Hʹʹ = 

EK(EK(H)) as the record authentication key for nonce Nʹʹ = EK(H). In fact, we now use this observation to improve 

the attack. 

Once a single (L,H) pair is recovered for some nonce N, there is an alternative and less expensive method to 

recover additional (L,H) pairs. Thus, we can set t = 0 in the above attack, recover one (L,H) pair, and use the 

alternative method to recover more (L,H) pairs. In particular, suppose we have recovered (L,H) for some nonce N. 

Then, as noted above, we obtain the record authentication key Hʹ = EK(H) for nonce Nʹ = H. Furthermore, we know 

that the record encryption key Lʹ for nonce Nʹ is given by Lʹ = (EK(EK(H)),X), where EK(EK(H)) is known (it is the right 

128-bit half of L) and where X is an unknown 128-bit value. Therefore, we query an arbitrary (A,P) pair with nonce 

Nʹ, observe the tag T and ciphertext C, exhaust over the 2128 possibilities for X, and obtain check from T and C. To 

summarize, given (L,H) for N, we immediately obtain Hʹ for nonce Nʹ = H, and we can recover the 256-bit Lʹ for 

nonce Nʹ with one query and 128 bits of work. 

Clearly, this process can be repeated. Given (Lʹ,Hʹ) for Nʹ, we can then recover (Lʹʹ,Hʹʹ) for Nʹʹ = Hʹ with one query 

under nonce Nʹʹ and 128 bits of work. Note that if we view EK as a random permutation on 128 bits, the expected 

length of the cycle that the nonce N is on is about 2127. Thus, we expect to be able to recover 2k additional (L,H) 

pairs with 2128+k work (for k ≤ 127). Hence, the full attack requires 2s+1 + 2k queries, max(2s+1,2k) memory, 2256-s + 

2128+k work, and one forgery attempt to recover 1 + 2k (L,H) pairs. Note that the single forgery attempt is needed 

to recover the first H; no additional forgery attempts are needed to recover subsequent H values. 

As an example, consider the parameters s = 64 and k = 64. In this case, using about 265.6 queries and 265 memory, 

we can recover about 264 (L,H) pairs with 2193 work and one forgery attempt. 

Returning the Nonce 

Previous versions of AES-GCM-SIV XORed the nonce to the POLYVAL output in the tag generation process. 

Returning the nonce strengthens the scheme against this attack, although it does not completely thwart the 

attack. We can mount a variant of the attack by choosing two different nonces N and N’ that differ only in their 

most significant bit, say N = 0||X and N’=1||X for some 127-bit value X. Then the two tags associated with (A,P) = 

(ø,ø) satisfy T = EL(N) and T’ = EL’(N). As such, in the offline phase we can set (s,t)=(1,0) and compute Tj = ELj(N) for 

2128-s+t = 2127 distinct values of Lj. Consequently, we obtain an attack that uses (at most) 2s + 2t+1 = 4 queries, albeit 

it is marginally subexhaustive, requiring 2127 work to recover the record encryption key and record authentication 

key for one of the nonces, and the record authentication key for an additional nonce (in the case of 128-bit master 

keys). 



 

 

Second Attack (128-bit Keys) 

In this section we describe the attack for the case of 128-bit keys K. As with the first attack, this attack consists of 

a data collection phase and an offline phase. Fix arbitrarily a 1-block plaintext message P0 and parameters m ≥ n 

> 0, and ask for the encryptions of P0 under distinct nonces until some 127-bit T95||T32 value is observed 2m times. 

(We assume there is no additional authenticated data A.) For example, if m = 1 we expect a repeat in T95||T32 after 

observing the encryptions of P0 under about 264 nonces Ni. 

In [2], extensions of the birthday problem are discussed which estimate Q[x,r], the average number of selections 

with replacement from a set of x elements until some element has been selected r times (an r-fold repeat). It is 

proved that 

Q[x,r] ≈ (r!)1/r Gamma(1+1/r) x(1-1/r) 

as x tends to infinity. In our case x = 2127. If r = 4 (i.e., m = 2), we find that Q[2127,4] ≈ 296.3 queries would be needed 

to observe some T95||T32 value four times. In general, Q[2127,2m] queries are needed to observe some T95||T32 

value 2m times. In a Q[2127,2m]-long table we store the tags, along with the corresponding values of N and C0. Thus, 

the memory is equal to the number of queries, namely Q[2127,2m]. (Algorithms exist which can reduce the memory, 

but would require the attacker to repeat nonces.) The table is then sorted on T95||T32 in order to find the 2m-fold 

repeat. Subsequently, we consider only these 2m entries of the table, but sorted on the associated values of C0. 

In the offline phase we compute (C0)j = P0 + ELj(1||T95||T32) for 2128-n distinct values of Lj, where T95||T32 is the 

value of the 2m-long repeat found above. We expect 2m+(128-n)-128 = 2m-n (Ni,Lj) pairs for which Li = EK(EK(Ni)) = Lj, and 

we can detect these events by observing a match on the corresponding ciphertexts C0. We also expect 2m-n random 

matches. (One way to eliminate random matches is to use 2-block messages (P0,P1) in the attack, gaining additional 

check from the (P1,C1) pairs.) Once we recover a record encryption key L for some N, it is straightforward to recover 

H, as described earlier. Altogether, this attack requires Q[2127,2m] queries/memory, 2128-n work, and 2m-n forgery 

attempts to recover the record encryption and authentication keys for 2m-n nonces and the record authentication 

keys for an additional 2m-n nonces. 

Second Attack (256-bit Keys) 

The previous attack is similar for 256-bit keys, so we omit most of the details. Furthermore, if we set m = n and 

only recover one (L,H) pair, we can then use the alternative method (for the first attack with 256-bit keys) to 

recover additional (L,H) pairs. As such, the full attack requires Q[2127,2m] + 2k queries, max(Q[2127,2m],2k) memory, 

2256-m + 2128+k work, and one forgery attempt to recover 1 + 2k (L,H) pairs. 

Third Attack 

Recall that when the master key K is 256 bits long, H = EK(N) and L = EK(H)||EK(EK(H)). Suppose N is a fixed point of 

EK, i.e., EK(N) = N. Then H = N and L = N||N. If we view EK as a random permutation on 128 bits, then the probability 

of at least one fixed point for EK is approximately 1 – 1/e ≈ 0.63, and the expected number of fixed points is one. 

This leads to the following attack. Let A be arbitrary and let P denote a one-block plaintext. We query (A,P) with 

all 2128 nonces N. For each query we guess that H = N and L = N||N and check if (A,P) generates the observed tag 

T and if P encrypts to the observed ciphertext C. If N is a fixed point of EK, then H = N and L = N||N; thus, we obtain 

a match on T and C with probability 1. If N is not a fixed point of EK, then H ≠ N and L ≠ N||N. Since the probability 

of a random match on T and C is 2-256, we do not expect any matches for nonces that are not fixed points of EK. 

Thus, we recover at least one 256-bit record encryption key (of the form L = N||N), along with the corresponding 



 

 

record authentication key H = N. The attack requires 2128 queries and 2128 work, and succeeds with probability 

about 0.63. 
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