

Delay-Tolerant Networking Working Group S. Burleigh
Internet Draft JPL, Calif. Inst. Of Technology
Intended status: Standards Track K. Fall
Expires: January 2020 Roland Computing Services
 E. Birrane
 APL, Johns Hopkins University
 July 21, 2019

Burleigh Expires January 2020 [Page 1]

Bundle Protocol Version 7

draft-ietf-dtn-bpbis-143.txt

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as
reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

This Internet-Draft will expire on January 22, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 2]

Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.

Abstract

This Internet Draft presents a specification for Bundle Protocol,
adapted from the experimental Bundle Protocol specification
developed by the Delay-Tolerant Networking Research group of the
Internet Research Task Force and documented in RFC 5050.

Table of Contents

1. Introduction...3
2. Conventions used in this document..............................5
3. Service Description..5

3.1. Definitions...5
3.2. Discussion of BP concepts.................................9
3.3. Services Offered by Bundle Protocol Agents...............12

4. Bundle Format...12
4.1. BP Fundamental Data Structures...........................13

4.1.1. CRC Type..13
4.1.2. CRC...13
4.1.3. Bundle Processing Control Flags.....................13
4.1.4. Block Processing Control Flags......................15
4.1.5. Identifiers...16

4.1.5.1. Endpoint ID....................................16
4.1.5.2. Node ID..17

4.1.6. DTN Time..17
4.1.7. Creation Timestamp..................................19
4.1.8. Block-type-specific Data............................19

4.2. Bundle Representation....................................19
4.2.1. Bundle..20
4.2.2. Primary Bundle Block................................20
4.2.3. Canonical Bundle Block Format.......................22

4.3. Extension Blocks...23
4.3.1. Previous Node.......................................24
4.3.2. Bundle Age..24
4.3.3. Hop Count...24

5. Bundle Processing...25
5.1. Generation of Administrative Records.....................25
5.2. Bundle Transmission......................................26
5.3. Bundle Dispatching.......................................26
5.4. Bundle Forwarding..27

5.4.1. Forwarding Contraindicated..........................28
5.4.2. Forwarding Failed...................................29

5.5. Bundle Expiration..29

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 3]

5.6. Bundle Reception...29
5.7. Local Bundle Delivery....................................30
5.8. Bundle Fragmentation.....................................31
5.9. Application Data Unit Reassembly.........................32
5.10. Bundle Deletion...33
5.11. Discarding a Bundle.....................................33
5.12. Canceling a Transmission................................33

6. Administrative Record Processing..............................33
6.1. Administrative Records...................................33

6.1.1. Bundle Status Reports...............................34
6.2. Generation of Administrative Records.....................37

7. Services Required of the Convergence Layer....................37
7.1. The Convergence Layer....................................37
7.2. Summary of Convergence Layer Services....................38

8. Implementation Status...38
9. Security Considerations.......................................39
10. IANA Considerations..41

10.1. Additional entries in registry of Bundle Block Types....41
10.2. New registry of URI scheme types........................42
10.3. New URI scheme "dtn"....................................42

11. References...44
11.1. Normative References....................................44
11.2. Informative References..................................45

12. Acknowledgments..45
13. Significant Changes from RFC 5050............................46
Appendix A. For More Information.................................47
Appendix B. CDDL expression......................................48

1. Introduction

Since the publication of the Bundle Protocol Specification
(Experimental RFC 5050) in 2007, the Delay-Tolerant Networking (DTN)
Bundle Protocol has been implemented in multiple programming
languages and deployed to a wide variety of computing platforms.
This implementation and deployment experience has identified
opportunities for making the protocol simpler, more capable, and
easier to use. The present document, standardizing the Bundle
Protocol (BP), is adapted from RFC 5050 in that context.

This document describes version 7 of BP.

Delay Tolerant Networking is a network architecture providing
communications in and/or through highly stressed environments.

Stressed networking environments include those with intermittent
connectivity, large and/or variable delays, and high bit error
rates. To provide its services, BP may be viewed as sitting at the
application layer of some number of constituent networks, forming a

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 4]

store-carry-forward overlay network. Key capabilities of BP
include:

 Ability to use physical motility for the movement of data
 Ability to move the responsibility for error control from one

node to another
 Ability to cope with intermittent connectivity, including cases

where the sender and receiver are not concurrently present in
the network

 Ability to take advantage of scheduled, predicted, and
opportunistic connectivity, whether bidirectional or
unidirectional, in addition to continuous connectivity

 Late binding of overlay network endpoint identifiers to

underlying constituent network addresses

For descriptions of these capabilities and the rationale for the DTN
architecture, see [ARCH] and [SIGC].

BP’s location within the standard protocol stack is as shown in
Figure 1. BP uses underlying "native" transport and/or network
protocols for communications within a given constituent network.

The interface between the bundle protocol and a specific underlying
protocol is termed a "convergence layer adapter".

Figure 1 shows three distinct transport and network protocols
(denoted T1/N1, T2/N2, and T3/N3).

+-----------+ +-----------+
| BP app | | BP app |
+---------v-| +->>>>>>>>>>v-+ +->>>>>>>>>>v-+ +-^---------+
| BP v | | ^ BP v | | ^ BP v | | ^ BP |
+---------v-+ +-^---------v-+ +-^---------v-+ +-^---------+
| T1 v | + ^ T1/T2 v | + ^ T2/T3 v | | ^ T3 |
+---------v-+ +-^---------v-+ +-^---------v + +-^---------+
| N1 v | | ^ N1/N2 v | | ^ N2/N3 v | | ^ N3 |
+---------v-+ +-^---------v + +-^---------v-+ +-^---------+
| >>>>>>>>^ >>>>>>>>>>^ >>>>>>>>^ |
+-----------+ +-------------+ +-------------+ +-----------+
<---- A network ---->		<---- A network ---->

Figure 1: The Bundle Protocol in the Protocol Stack Model

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 5]

This document describes the format of the protocol data units
(called "bundles") passed between entities participating in BP
communications.

The entities are referred to as "bundle nodes". This document does
not address:

 Operations in the convergence layer adapters that bundle nodes
use to transport data through specific types of internets.
(However, the document does discuss the services that must be
provided by each adapter at the convergence layer.)

 The bundle route computation algorithm.
 Mechanisms for populating the routing or forwarding information

bases of bundle nodes.
 The mechanisms for securing bundles en route.
 The mechanisms for managing bundle nodes.

Note that implementations of the specification presented in this
document will not be interoperable with implementations of RFC 5050.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC-2119 [RFC2119].

In this document, these words will appear with that interpretation
only when in ALL CAPS. Lower case uses of these words are not to be

interpreted as carrying RFC-2119 significance.

3. Service Description

3.1. Definitions

Bundle - A bundle is a protocol data unit of BP, so named because
negotiation of the parameters of a data exchange may be impractical
in a delay-tolerant network: it is often better practice to “bundle”
with a unit of application data all metadata that might be needed in
order to make the data immediately usable when delivered to the
application. Each bundle comprises a sequence of two or more
"blocks" of protocol data, which serve various purposes.

Block - A bundle protocol block is one of the protocol data

structures that together constitute a well-formed bundle.

Application Data Unit (ADU) – An application data unit is the unit
of data whose conveyance to the bundle’s destination is the purpose

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 6]

for the transmission of some bundle that is not a fragment (as
defined below).

Bundle payload - A bundle payload (or simply "payload") is the
application data whose conveyance to the bundle’s destination is the
purpose for the transmission of a given bundle; it is the content of
the bundle's payload block. The terms "bundle content", "bundle
payload", and "payload" are used interchangeably in this document.
For a bundle that is not a fragment (as defined below), the payload
is an application data unit.

Partial payload – A partial payload is a payload that comprises
either the first N bytes or the last N bytes of some other payload

of length M, such that 0 < N < M. Note that every partial payload
is a payload and therefore can be further subdivided into partial
payloads.

Fragment - A fragment is a bundle whose payload block contains a
partial payload.

Bundle node - A bundle node (or, in the context of this document,
simply a "node") is any entity that can send and/or receive bundles.
Each bundle node has three conceptual components, defined below, as
shown in Figure 2: a "bundle protocol agent", a set of zero or more
"convergence layer adapters", and an "application agent".

+---+
|Node |

| |
| +---+ |
	Application Agent					
	+--------------------------+ +----------------------+					
		Administrative element		Application-specific		
				element		
	+--------------------------+ +----------------------+					
	^ ^					
	Admin	records Application	data			
+----------------v--------------------------v-----------+						
^						
	ADUs					

| | |
| +-----------------------------v-------------------------+ |
| |Bundle Protocol Agent | |
| | | |

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 7]

| | | |
| +---+ |
| ^ ^ ^ |
| | Bundles | Bundles Bundles | |
| | | | |
| +------v-----+ +-----v------+ +-----v-----+ |
	CLA 1		CLA 2		CLA n	
				. . .		
+-+------------+-----+------------+-----------+-----------+-+
 ^ ^ ^
 CL1|PDUs CL2|PDUs CLn|PDUs
 | | |

 +------v-----+ +-----v------+ +-----v-----+
 Network 1 Network 2 Network n

Figure 2: Components of a BP Node

Bundle protocol agent - The bundle protocol agent (BPA) of a node is
the node component that offers the BP services and executes the
procedures of the bundle protocol.

Convergence layer adapter - A convergence layer adapter (CLA) is a
node component that sends and receives bundles on behalf of the BPA,
utilizing the services of some ’native’ protocol stack that is
supported in one of the networks within which the node is
functionally located.

Application agent - The application agent (AA) of a node is the node
component that utilizes the BP services to effect communication for
some user purpose. The application agent in turn has two elements,
an administrative element and an application-specific element.

Application-specific element – The application-specific element of
an AA is the node component that constructs, requests transmission
of, accepts delivery of, and processes units of user application
data.

Administrative element - The administrative element of an AA is the
node component that constructs and requests transmission of
administrative records (defined below), including status reports,
and accepts delivery of and processes any administrative records
that the node receives.

Administrative record – A BP administrative record is an application
data unit that is exchanged between the administrative elements of
nodes’ application agents for some BP administrative purpose. The

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 8]

only administrative record defined in this specification is the
status report, discussed later.

Bundle endpoint - A bundle endpoint (or simply "endpoint") is a set
of zero or more bundle nodes that all identify themselves for BP
purposes by some common identifier, called a "bundle endpoint ID"
(or, in this document, simply "endpoint ID"; endpoint IDs are
described in detail in Section 4.4.1 below).

Singleton endpoint – A singleton endpoint is an endpoint that always
contains exactly one member.

Registration - A registration is the state machine characterizing a

given node’s membership in a given endpoint. Any single
registration has an associated delivery failure action as defined
below and must at any time be in one of two states: Active or
Passive.

Delivery - A bundle is considered to have been delivered at a node
subject to a registration as soon as the application data unit that
is the payload of the bundle, together with any relevant metadata
(an implementation matter), has been presented to the node’s
application agent in a manner consistent with the state of that
registration.

Deliverability - A bundle is considered "deliverable" subject to a
registration if and only if (a) the bundle’s destination endpoint is
the endpoint with which the registration is associated, (b) the

bundle has not yet been delivered subject to this registration, and
(c) the bundle has not yet been "abandoned" (as defined below)
subject to this registration.

Abandonment - To abandon a bundle subject to some registration is to
assert that the bundle is not deliverable subject to that
registration.

Delivery failure action – The delivery failure action of a
registration is the action that is to be taken when a bundle that is
"deliverable" subject to that registration is received at a time
when the registration is in the Passive state.

Destination – The destination of a bundle is the endpoint comprising
the node(s) at which the bundle is to be delivered (as defined

below).

Transmission - A transmission is an attempt by a node’s BPA to cause
copies of a bundle to be delivered to one or more of the nodes that

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 9]

are members of some endpoint (the bundle’s destination) in response
to a transmission request issued by the node’s application agent.

Forwarding - To forward a bundle to a node is to invoke the services
of one or more CLAs in a sustained effort to cause a copy of the
bundle to be received by that node.

Discarding - To discard a bundle is to cease all operations on the
bundle and functionally erase all references to it. The specific
procedures by which this is accomplished are an implementation
matter.

Retention constraint - A retention constraint is an element of the

state of a bundle that prevents the bundle from being discarded.
That is, a bundle cannot be discarded while it has any retention
constraints.

Deletion - To delete a bundle is to remove unconditionally all of
the bundle’s retention constraints, enabling the bundle to be
discarded.

3.2. Discussion of BP concepts

Multiple instances of the same bundle (the same unit of DTN protocol
data) might exist concurrently in different parts of a network --
possibly differing in some blocks -- in the memory local to one or
more bundle nodes and/or in transit between nodes. In the context of
the operation of a bundle node, a bundle is an instance (copy), in

that node’s local memory, of some bundle that is in the network.

The payload for a bundle forwarded in response to a bundle
transmission request is the application data unit whose location is
provided as a parameter to that request. The payload for a bundle
forwarded in response to reception of a bundle is the payload of the
received bundle.

In the most familiar case, a bundle node is instantiated as a single
process running on a general-purpose computer, but in general the
definition is meant to be broader: a bundle node might alternatively
be a thread, an object in an object-oriented operating system, a
special-purpose hardware device, etc.

The manner in which the functions of the BPA are performed is wholly

an implementation matter. For example, BPA functionality might be
coded into each node individually; it might be implemented as a
shared library that is used in common by any number of bundle nodes
on a single computer; it might be implemented as a daemon whose

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 10]

services are invoked via inter-process or network communication by
any number of bundle nodes on one or more computers; it might be
implemented in hardware.

Every CLA implements its own thin layer of protocol, interposed
between BP and the (usually "top") protocol(s) of the underlying
native protocol stack; this "CL protocol" may only serve to
multiplex and de-multiplex bundles to and from the underlying native
protocol, or it may offer additional CL-specific functionality. The
manner in which a CLA sends and receives bundles, as well as the
definitions of CLAs and CL protocols, are beyond the scope of this
specification.

Note that the administrative element of a node’s application agent
may itself, in some cases, function as a convergence-layer adapter.
That is, outgoing bundles may be "tunneled" through encapsulating
bundles:

 An outgoing bundle constitutes a byte array. This byte array
may, like any other, be presented to the bundle protocol agent
as an application data unit that is to be transmitted to some
endpoint.

 The original bundle thus forms the payload of an encapsulating
bundle that is forwarded using some other convergence-layer
protocol(s).

 When the encapsulating bundle is received, its payload is
delivered to the peer application agent administrative element,
which then instructs the bundle protocol agent to dispatch that

original bundle in the usual way.

The purposes for which this technique may be useful (such as cross-
domain security) are beyond the scope of this specification.

The only interface between the BPA and the application-specific
element of the AA is the BP service interface. But between the BPA
and the administrative element of the AA there is a (conceptual)
private control interface in addition to the BP service interface.
This private control interface enables the BPA and the
administrative element of the AA to direct each other to take action
under specific circumstances.

In the case of a node that serves simply as a BP "router", the AA
may have no application-specific element at all. The application-

specific elements of other nodes’ AAs may perform arbitrarily
complex application functions, perhaps even offering multiplexed DTN
communication services to a number of other applications. As with

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 11]

the BPA, the manner in which the AA performs its functions is wholly
an implementation matter.

Singletons are the most familiar sort of endpoint, but in general
the endpoint notion is meant to be broader. For example, the nodes
in a sensor network might constitute a set of bundle nodes that
identify themselves by a single common endpoint ID and thus form a
single bundle endpoint. *Note* too that a given bundle node might
identify itself by multiple endpoint IDs and thus be a member of
multiple bundle endpoints.

The destination of every bundle is an endpoint, which may or may not
be singleton. The source of every bundle is a node, identified by

the endpoint ID for some singleton endpoint that contains that node.
Note, though, that the source node ID asserted in a given bundle may
be the null endpoint ID (as described later) rather than the
endpoint ID of the actual source node; bundles for which the
asserted source node ID is the null endpoint ID are termed
“anonymous” bundles.

Any number of transmissions may be concurrently undertaken by the
bundle protocol agent of a given node.

When the bundle protocol agent of a node determines that a bundle
must be forwarded to a node (either to a node that is a member of
the bundle’s destination endpoint or to some intermediate forwarding
node) in the course of completing the successful transmission of
that bundle, it the bundle protocol agent invokes the services of

one or more CLAs in a sustained effort to cause a copy of the bundle
to be received by that node.

Upon reception, the processing of a bundle that has been received by
a given node depends on whether or not the receiving node is
registered in the bundle’s destination endpoint. If it is, and if
the payload of the bundle is non-fragmentary (possibly as a result
of successful payload reassembly from fragmentary payloads,
including the original payload of the newly received bundle), then
the bundle is normally delivered to the node’s application agent
subject to the registration characterizing the node’s membership in
the destination endpoint.

The bundle protocol does not natively ensure delivery of a bundle to
its destination. Data loss along the path to the destination node

can be minimized by utilizing reliable convergence-layer protocols
between neighbors on all segments of the end-to-end path, but for
end-to-end bundle delivery assurance it will be necessary to develop

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 12]

extensions to the bundle protocol and/or application-layer
mechanisms.

The bundle protocol is designed for extensibility. Bundle protocol
extensions, documented elsewhere, may extend this specification by:

 defining additional blocks;
 defining additional administrative records;
 defining additional bundle processing flags;
 defining additional block processing flags;
 defining additional types of bundle status reports;
 defining additional bundle status report reason codes;
 defining additional mandates and constraints on processing

that conformant bundle protocol agents must perform at
specified points in the inbound and outbound bundle processing
cycles.

3.3. Services Offered by Bundle Protocol Agents

The BPA of each node is expected to provide the following services
to the node’s application agent:

 commencing a registration (registering the node in an
endpoint);

 terminating a registration;
 switching a registration between Active and Passive states;
 transmitting a bundle to an identified bundle endpoint;
 canceling a transmission;

 polling a registration that is in the Passive state;
 delivering a received bundle.

4. Bundle Format

The format of bundles SHALL conform to the Concise Binary Object
Representation (CBOR [RFC7049]).

Each bundle SHALL be a concatenated sequence of at least two blocks,
represented as a CBOR indefinite-length array. The first block in
the sequence (the first item of the array) MUST be a primary bundle
block in CBOR representation as described below; the bundle MUST
have exactly one primary bundle block. The primary block MUST be
followed by one or more canonical bundle blocks (additional array
items) in CBOR representation as described below. The last such

block MUST be a payload block; the bundle MUST have exactly one
payload block. The last item of the array, immediately following
the payload block, SHALL be a CBOR "break" stop code.

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 13]

(Note that, while CBOR permits considerable flexibility in the
encoding of bundles, this flexibility must not be interpreted as
inviting increased complexity in protocol data unit structure.)

An implementation of the Bundle Protocol MAY discard any sequence of
bytes that does not conform to the Bundle Protocol specification.

An implementation of the Bundle Protocol MAY accept a sequence of
bytes that does not conform to the Bundle Protocol specification
(e.g., one that represents data elements in fixed-length arrays
rather than indefinite-length arrays) and transform it into
conformant BP structure before processing it. Procedures for
accomplishing such a transformation are beyond the scope of this

specification.

4.1. BP Fundamental Data Structures

4.1.1. CRC Type

CRC type is an unsigned integer type code for which the following
values (and no others) are valid:

 0 indicates "no CRC is present."
 1 indicates "a standard X-25 CRC-16 is present." [CRC16]
 2 indicates "a standard CRC32C (Castagnoli) CRC-32 is present."

[CRC32C]

CRC type SHALL be represented as a CBOR unsigned integer.

For examples of CRC32C CRCs, see Appendix A.4 of [RFC7143].

4.1.2. CRC

CRC SHALL be omitted from a block if and only if the block’s CRC
type code is zero.

When not omitted, the CRC SHALL be represented as sequence of two
bytes (if CRC type is 1) or as a sequence of four bytes (if CRC type
is 2); in each case the sequence of bytes SHALL constitute an
unsigned integer value (of 16 or 32 bits, respectively) in network
byte order.

4.1.3. Bundle Processing Control Flags

Bundle processing control flags assert properties of the bundle as a
whole rather than of any particular block of the bundle. They are
conveyed in the primary block of the bundle.

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 14]

The following properties are asserted by the bundle processing
control flags:

 The bundle is a fragment. (Boolean)

 The bundle's payload is an administrative record. (Boolean)

 The bundle must not be fragmented. (Boolean)

 Acknowledgment by the user application is requested. (Boolean)

 Status time is requested in all status reports. (Boolean)

 The bundle contains a "manifest" extension block. (Boolean)

 Flags requesting types of status reports (all Boolean):

o Request reporting of bundle reception.

o Request reporting of bundle forwarding.

o Request reporting of bundle delivery.

o Request reporting of bundle deletion.

If the bundle processing control flags indicate that the bundle’s
application data unit is an administrative record, then all status
report request flag values must be zero.

If the bundle’s source node is omitted (i.e., the source node ID is
the ID of the null endpoint, which has no members as discussed
below; this option enables anonymous bundle transmission), then the
bundle is not uniquely identifiable and all bundle protocol features
that rely on bundle identity must therefore be disabled: the "Bundle
must not be fragmented" flag value must be 1 and all status report
request flag values must be zero.

The bundle processing control flags SHALL be represented as a CBOR
unsigned integer item containing a bit field of 16 bits indicating
the control flag values as follows:

 Bit 0 (the high-order bit, 0x8000): reserved.
 Bit 1 (0x4000): reserved.

 Bit 2 (0x2000): reserved.
 Bit 3(0x1000): bundle deletion status reports are requested.
 Bit 4(0x0800): bundle delivery status reports are requested.
 Bit 5(0x0400): bundle forwarding status reports are requested.

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 15]

 Bit 6(0x0200): reserved.
 Bit 7(0x0100): bundle reception status reports are requested.
 Bit 8(0x0080): bundle contains a Manifest block.
 Bit 9(0x0040): status time is requested in all status reports.
 Bit 10(0x0020): user application acknowledgement is requested.
 Bit 11(0x0010): reserved.
 Bit 12(0x0008): reserved.
 Bit 13(0x0004): bundle must not be fragmented.
 Bit 14(0x0002): payload is an administrative record.
 Bit 15 (the low-order bit, 0x0001: bundle is a fragment.

4.1.4. Block Processing Control Flags

The block processing control flags assert properties of canonical
bundle blocks. They are conveyed in the header of the block to
which they pertain.

The following properties are asserted by the block processing
control flags:

 This block must be replicated in every fragment. (Boolean)

 Transmission of a status report is requested if this block
can’t be processed. (Boolean)

 Block must be removed from the bundle if it can't be processed.
(Boolean)

 Bundle must be deleted if this block can’t be processed.
(Boolean)

For each bundle whose bundle processing control flags indicate that
the bundle’s application data unit is an administrative record, or
whose source node ID is the null endpoint ID as defined below, the
value of the "Transmit status report if block can’t be processed"
flag in every canonical block of the bundle must be zero.

The block processing control flags SHALL be represented as a CBOR
unsigned integer item containing a bit field of 8 bits indicating
the control flag values as follows:

 Bit 0 (the high-order bit, 0x80): reserved.
 Bit 1 (0x40): reserved.

 Bit 2(0x20): reserved.
 Bit 3(0x10): reserved.
 Bit 4(0x08): bundle must be deleted if block can’t be

processed.

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 16]

 Bit 5(0x04): transmission of a status report is requested if
block can’t be processed.

 Bit 6(0x02): block must be removed from bundle if it can’t be
processed.

 Bit 7(the low-order bit, 0x01): block must be replicated in
every fragment.

4.1.5. Identifiers

4.1.5.1. Endpoint ID

The destinations of bundles are bundle endpoints, identified by text
strings termed "endpoint IDs" (see Section 3.1). Each endpoint ID

(EID) is a Uniform Resource Identifier (URI; [URI]). As such, each
endpoint ID can be characterized as having this general structure:

< scheme name > : < scheme-specific part, or "SSP" >

The scheme identified by the < scheme name > in an endpoint ID is a
set of syntactic and semantic rules that fully explain how to parse
and interpret the SSP. The set of allowable schemes is effectively
unlimited. Any scheme conforming to [URIREG] may be used in a bundle
protocol endpoint ID.

Note that, although endpoint IDs are URIs, implementations of the BP
service interface may support expression of endpoint IDs in some
internationalized manner (e.g., Internationalized Resource
Identifiers (IRIs); see [RFC3987]).

The endpoint ID "dtn:none" identifies the "null endpoint", the
endpoint that by definition never has any members.

Each BP endpoint ID (EID) SHALL be represented as a CBOR array
comprising a 2-tuple.

The first item of the array SHALL be the code number identifying the
endpoint’s URI scheme [URI], as defined in the registry of URI
scheme code numbers for Bundle Protocol maintained by IANA as
described in Section 10. [URIREG]. Each URI scheme code number
SHALL be represented as a CBOR unsigned integer.

The second item of the array SHALL be the applicable CBOR
representation of the scheme-specific part (SSP) of the EID, defined

as follows:

 If the EID’s URI scheme is "dtn" then the SSP SHALL be
represented as a CBOR text string unless the EID’s SSP is

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 17]

"none", in which case the SSP SHALL be represented as a CBOR
unsigned integer with the value zero.

 If the EID’s URI scheme is "ipn" then the SSP SHALL be
represented as a CBOR array comprising a 2-tuple. The first
item of this array SHALL be the EID’s node number represented
as a CBOR unsigned integer. The second item of this array
SHALL be the EID’s service number represented as a CBOR
unsigned integer.

 Definitions of the CBOR representations of the SSPs of EIDs
encoded in other URI schemes are included in the specifications
defining those schemes.

4.1.5.2. Node ID

For many purposes of the Bundle Protocol it is important to identify
the node that is operative in some context.

As discussed in 3.1 above, nodes are distinct from endpoints;
specifically, an endpoint is a set of zero or more nodes. But
rather than define a separate namespace for node identifiers, we
instead use endpoint identifiers to identify nodes, subject to the
following restrictions:

 Every node MUST be a member of at least one singleton endpoint.
 The EID of any singleton endpoint of which a node is a member

MAY be used to identify that node. A "node ID" is an EID that
is used in this way.

 A node’s membership in a given singleton endpoint MUST be

sustained at least until the nominal operation of the Bundle
Protocol no longer depends on the identification of that node
using that endpoint’s ID.

4.1.6. DTN Time

A DTN time is an unsigned integer indicating an interval of Unix
epoch time that has elapsed since the start of the year 2000 on the
Coordinated Universal Time (UTC) scale [UTC], which is Unix epoch
timestamp 946684800. (Note that the DTN time that equates to the
current time as reported by the POSIX time() function can be derived
by subtracting 946684800 from that reported time value.) Each DTN
time SHALL be represented as a CBOR unsigned integer item.

Note: The choice of Unix epoch time as the scale on which time

values in DTN are expressed may need some explanation.

The computation of time intervals is integral to several DTN
protocol procedures. Inconsistency in the results of these

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 18]

computations would result in inconsistent performance of those
procedures and would compromise the operation of the protocol.

So the key qualities sought in selecting the time scale to be used
for expressing DTN times were these: (a) the broadest possible
access to the value of the current time on the selected time scale,
enabling all nodes of the network to perform protocol procedures in
the same way using the same information, and (b) ease of time
interval computation.

UTC was an obvious candidate but fell short on both counts. First,
millions of devices can readily query the current UTC time, thanks
to NTP, but spacecraft operating beyond Earth orbit cannot. There

is currently no adaptation of NTP that operates over the long and
variable signal propagation delays between vehicles in deep space.

Moreover, computing the number of actual elapsed seconds between two
UTC times is non-trivial because UTC times include leap seconds. As
an illustration of the issue, consider the passage of UTC and TAI
time at a ground station antenna that began transmitting data at
8Kbps around midnight December 31, 2016 (UTC), when a leap second
was added (*):

 UTC TAI Total bytes sent

t1 2016-12-31 23:59:58 2017-01-01 00:00:34 0

t2 2016-12-31 23:59:59 2017-01-01 00:00:35 1000

t3 2016-12-31 23:59:60* 2017-01-01 00:00:36 2000

t4 2017-01-01 00:00:00 2017-01-01 00:00:37 3000

t5 2017-01-01 00:00:01 2017-01-01 00:00:38 4000

Suppose we must compute the volume of data transmitted in the
interval between t1 and t5. If we use TAI time values, the elapsed
time interval is 4 seconds (00:00:38 minus 00:00:34); at 8Kbps, the
computed transmission volume is 4000 bytes, which is correct. If we
instead use UTC time values as stated, without special compensation
for the insertion of the leap second, the elapsed time interval is 3
seconds (00:00:01 minus 23:59:58); the computed transmission volume
is then 3000 bytes, which is incorrect.

TAI, then, would be an ideal time scale for DTN, as the interval in
seconds between two TAI times can be computed by simply subtracting
one from the other; there is no need to consult a table of leap

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 19]

seconds each time a time interval is computed. Unfortunately the
current value of TAI, as tracked by atomic clocks on Earth and
carefully managed by the International Bureau of Weights and
Measures, is likewise not directly accessible to spacecraft.

Unix epoch time is the next best option. Like TAI, Unix epoch time
is simply a count of seconds elapsed since a standard epoch. Unlike
TAI, the current value of Unix epoch time is provided by virtually
all operating systems on which BP is likely to run.

Implementers of Bundle Protocol need to be aware that the difference
between DTN time and UTC time will increase with the passing years
as additional leap seconds are inserted into UTC. Converting DTN

time to the correct corresponding UTC time, in the event that such
conversion is needed, will require an understanding of the leap
second adjustments made to UTC over time; for software written in C,
the widely supported gmtime() function provides this service.

Implementers also need to be aware that DTN time values conveyed in
CBOR representation in bundles can conceivably exceed (2**32 – 1).

4.1.7. Creation Timestamp

Each creation timestamp SHALL be represented as a CBOR array item
comprising a 2-tuple.

The first item of the array SHALL be a DTN time.

The second item of the array SHALL be the creation timestamp’s
sequence number, represented as a CBOR unsigned integer.

4.1.8. Block-type-specific Data

Block-type-specific data in each block (other than the primary
block) SHALL be the applicable CBOR representation of the content of
the block. Details of this representation are included in the
specification defining the block type.

4.2. Bundle Representation

This section describes the primary block in detail and non-primary
blocks in general. Rules for processing these blocks appear in
Section 5 of this document.

Note that supplementary DTN protocol specifications (including, but
not restricted to, the Bundle Security Protocol [BPSEC]) may require

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 20]

that BP implementations conforming to those protocols construct and
process additional blocks.

4.2.1. Bundle

Each bundle SHALL be represented as a CBOR indefinite-length array.
The first item of this array SHALL be the CBOR representation of a
Primary Block. Every other item of the array except the last SHALL
be the CBOR representation of a Canonical Block. The last item of
the array SHALL be a CBOR "break" stop code.

Associated with each block of a bundle is a block number. The block
number uniquely identifies the block within the bundle, enabling

blocks (notably bundle security protocol blocks) to reference other
blocks in the same bundle without ambiguity. The block number of
the primary block is implicitly zero; the block numbers of all other
blocks are explicitly stated in block headers as noted below. Block
numbering is unrelated to the order in which blocks are sequenced in
the bundle. The block number of the payload block is always 1.

4.2.2. Primary Bundle Block

The primary bundle block contains the basic information needed to
forward bundles to their destinations.

Each primary block SHALL be represented as a CBOR array; the number
of elements in the array SHALL be 8 (if the bundle is not a fragment
and CRC type is zero) or 9 (if the bundle is not a fragment and CRC

type is non-zero) or 10 (if the bundle is a fragment and CRC type is
zero) or 11 (if the bundle is a fragment and CRC-type is non-zero).

The primary block of each bundle SHALL be immutable. The values of
all fields in the primary block must remain unchanged from the time
the block is created to the time it is delivered.

The fields of the primary bundle block SHALL be as follows, listed
in the order in which they MUST appear:

Version: An unsigned integer value indicating the version of the
bundle protocol that constructed this block. The present document
describes version 7 of the bundle protocol. Version number SHALL be
represented as a CBOR unsigned integer item.

Bundle Processing Control Flags: The Bundle Processing Control Flags
are discussed in Section 4.1.3. above.

CRC Type: CRC Type codes are discussed in Section 4.1.1. above.

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 21]

Destination EID: The Destination EID field identifies the bundle
endpoint that is the bundle's destination, i.e., the endpoint that
contains the node(s) at which the bundle is to be delivered.

Source node ID: The Source node ID field identifies the bundle node
at which the bundle was initially transmitted, except that Source
node ID may be the null endpoint ID in the event that the bundle’s
source chooses to remain anonymous.

Report-to EID: The Report-to EID field identifies the bundle
endpoint to which status reports pertaining to the forwarding and
delivery of this bundle are to be transmitted.

Creation Timestamp: The creation timestamp is a pair of unsigned
integers that, together with the source node ID and (if the bundle
is a fragment) the fragment offset and payload length, serve to
identify the bundle. The first of these integers is the bundle’s
creation time, while the second is the bundle’s creation timestamp
sequence number. Bundle creation time shall be the DTN time at which
the transmission request was received that resulted in the creation
of the bundle. Sequence count shall be the latest value (as of the
time at which that transmission request was received) of a
monotonically increasing positive integer counter managed by the
source node’s bundle protocol agent that may be reset to zero
whenever the current time advances by one second. For nodes that
lack accurate clocks, it is recommended that bundle creation time be
set to zero and that the counter used as the source of the bundle
sequence count never be reset to zero. Note that, in general, the

creation of two distinct bundles with the same source node ID and
bundle creation timestamp may result in unexpected network behavior
and/or suboptimal performance. The combination of source node ID and
bundle creation timestamp serves to identify a single transmission
request, enabling it to be acknowledged by the receiving application
(provided the source node ID is not the null endpoint ID).

Lifetime: The lifetime field is an unsigned integer that indicates
the time at which the bundle’s payload will no longer be useful,
encoded as a number of microseconds past the creation time. (For
high-rate deployments with very brief disruptions, fine-grained
expression of bundle lifetime may be useful.) When a bundle’s age
exceeds its lifetime, bundle nodes need no longer retain or forward
the bundle; the bundle SHOULD be deleted from the network. For
bundles originating at nodes that lack accurate clocks, it is

recommended that bundle age be obtained from the Bundle Age
extension block (see 4.3.2 below) rather than from the difference
between current time and bundle creation time. Bundle lifetime
SHALL be represented as a CBOR unsigned integer item.

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 22]

Fragment offset: If and only if the Bundle Processing Control Flags
of this Primary block indicate that the bundle is a fragment,
fragment offset SHALL be present in the primary block. Fragment
offset SHALL be represented as a CBOR unsigned integer indicating
the offset from the start of the original application data unit at
which the bytes comprising the payload of this bundle were located.

Total Application Data Unit Length: If and only if the Bundle
Processing Control Flags of this Primary block indicate that the
bundle is a fragment, total application data unit length SHALL be
present in the primary block. Total application data unit length
SHALL be represented as a CBOR unsigned integer indicating the total
length of the original application data unit of which this bundle’s

payload is a part.

CRC: If and only if the value of the CRC type field of this Primary
block is non-zero, a CRC SHALL be present in the primary block. The
length and nature of the CRC SHALL be as indicated by the CRC type.
The CRC SHALL be computed over the concatenation of all bytes
(including CBOR "break" characters) of the primary block including
the CRC field itself, which for this purpose SHALL be temporarily
populated with the value zero.

4.2.3. Canonical Bundle Block Format

Every block other than the primary block (all such blocks are termed
"canonical" blocks) SHALL be represented as a CBOR array; the number
of elements in the array SHALL be 5 (if CRC type is zero) or 6

(otherwise).

The fields of every canonical block SHALL be as follows, listed in
the order in which they MUST appear:

 Block type code, an unsigned integer. Bundle block type code 1
indicates that the block is a bundle payload block. Block type
codes 2 through 9 are explicitly reserved as noted later in
this specification. Block type codes 192 through 255 are not
reserved and are available for private and/or experimental use.
All other block type code values are reserved for future use.

 Block number, an unsigned integer as discussed above.
 Block processing control flags as discussed in Section 4.1.4

above.
 CRC type as discussed in Section 4.1.1 above.

 Block-type-specific data represented as a single definite-
length CBOR byte string, i.e., a CBOR byte string that is not
of indefinite length. For each type of block, the block-type-
specific data byte string is the serialization, in a block-

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 23]

type-specific manner, of the data conveyed by that type of
block; definitions of blocks are required to define the manner
in which block-type-specific data are serialized within the
block-type-specific data field. For the Payload Block in
particular (block type 1), the block-type-specific data field,
termed the "payload", SHALL be an application data unit, or
some contiguous extent thereof, represented as a definite-
length CBOR byte string.

 If and only if the value of the CRC type field of this block is
non-zero, a CRC. If present, the length and nature of the CRC
SHALL be as indicated by the CRC type and the CRC SHALL be
computed over the concatenation of all bytes of the block
(including CBOR "break" characters) including the CRC field

itself, which for this purpose SHALL be temporarily populated
with the value zero.

4.3. Extension Blocks

"Extension blocks" are all blocks other than the primary and payload
blocks. Because not all extension blocks are defined in the Bundle
Protocol specification (the present document), not all nodes
conforming to this specification will necessarily instantiate Bundle
Protocol implementations that include procedures for processing
(that is, recognizing, parsing, acting on, and/or producing) all
extension blocks. It is therefore possible for a node to receive a
bundle that includes extension blocks that the node cannot process.
The values of the block processing control flags indicate the action
to be taken by the bundle protocol agent when this is the case.

The following extension blocks are defined in other DTN protocol
specification documents as noted:

 Block Integrity Block (block type 2) and Block Confidentiality
Block (block type 3) are defined in the Bundle Security
Protocol specification (work in progress).

 Manifest Block (block type 4) is defined in the Manifest
Extension Block specification (work in progress). The manifest
block identifies the blocks that were present in the bundle at
the time it was created. The bundle MUST contain one (1)
occurrence of this type of block if the value of the "manifest"
flag in the bundle processing control flags is 1; otherwise the
bundle MUST NOT contain any Manifest block.

 The Flow Data Label Block (block type 6) is defined in the Flow

Data Label Extension Block specification (work in progress).
The flow data label block is intended to govern transmission of
the bundle by convergence-layer adaptersprovide additional

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 24]

information that can assist nodes in making forwarding
decisions.

The following extension blocks are defined in the current document.

4.3.1. Previous Node

The Previous Node block, block type 7, identifies the node that
forwarded this bundle to the local node (i.e., to the node at which
the bundle currently resides); its block-type-specific data is the
node ID of that forwarder node which SHALL take the form of a node
ID represented as described in Section 4.1.5.2. above. If the local
node is the source of the bundle, then the bundle MUST NOT contain

any previous node block. Otherwise the bundle SHOULD contain one
(1) occurrence of this type of block.

4.3.2. Bundle Age

The Bundle Age block, block type 8, contains the number of
microseconds that have elapsed between the time the bundle was
created and time at which it was most recently forwarded. It is
intended for use by nodes lacking access to an accurate clock, to
aid in determining the time at which a bundle’s lifetime expires.
The block-type-specific data of this block is an unsigned integer
containing the age of the bundle in microseconds, which SHALL be
represented as a CBOR unsigned integer item. (The age of the bundle
is the sum of all known intervals of the bundle’s residence at
forwarding nodes, up to the time at which the bundle was most

recently forwarded, plus the summation of signal propagation time
over all episodes of transmission between forwarding nodes.
Determination of these values is an implementation matter.) If the
bundle’s creation time is zero, then the bundle MUST contain exactly
one (1) occurrence of this type of block; otherwise, the bundle MAY
contain at most one (1) occurrence of this type of block. A bundle
MUST NOT contain multiple occurrences of the bundle age block, as
this could result in processing anomalies.

4.3.3. Hop Count

The Hop Count block, block type 9, contains two unsigned integers,
hop limit and hop count. A "hop" is here defined as an occasion on
which a bundle was forwarded from one node to another node. The hop
limit value SHOULD NOT be changed at any time after creation of the

Hop Count block; the hop count value SHOULD initially be zero and
SHOULD be increased by 1 on each hop.

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 25]

The hop count block is mainly intended as a safety mechanism, a
means of identifying bundles for removal from the network that can
never be delivered due to a persistent forwarding error. When a
bundle’s hop count exceeds its hop limit, the bundle SHOULD be
deleted for the reason "hop limit exceeded", following the bundle
deletion procedure defined in Section 5.10. . Procedures for
determining the appropriate hop limit for a block are beyond the
scope of this specification. The block-type-specific data in a hop
count block SHALL be represented as a CBOR array comprising a 2-
tuple. The first item of this array SHALL be the bundle's hop
limit, represented as a CBOR unsigned integer. The second item of
this array SHALL be the bundle's hop count, represented as a CBOR
unsigned integer. A bundle MAY contain at most one (1) occurrence of

this type of block.

5. Bundle Processing

The bundle processing procedures mandated in this section and in
Section 6 govern the operation of the Bundle Protocol Agent and the
Application Agent administrative element of each bundle node. They
are neither exhaustive nor exclusive. Supplementary DTN protocol
specifications (including, but not restricted to, the Bundle
Security Protocol [BPSEC]) may augment, override, or supersede the
mandates of this document.

5.1. Generation of Administrative Records

All transmission of bundles is in response to bundle transmission

requests presented by nodes’ application agents. When required to
"generate" an administrative record (such as a bundle status
report), the bundle protocol agent itself is responsible for causing
a new bundle to be transmitted, conveying that record. In concept,
the bundle protocol agent discharges this responsibility by
directing the administrative element of the node’s application agent
to construct the record and request its transmission as detailed in
Section 6 below. In practice, the manner in which administrative
record generation is accomplished is an implementation matter,
provided the constraints noted in Section 6 are observed.

Under some circumstancesNote that requesting status reports for any
single bundle might easily result in the generation of (1 + (2 *(N-
1))) status report bundles, where N is the number of nodes on the
path from the bundle’s source to its destination, inclusive. That

is, the requesting of status reports for large numbers of bundles
could result in an unacceptable increase in the bundle traffic in
the network. For this reason, the generation of status reports MUST

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 26]

be disabled by default and enabled only when the risk of excessive
network traffic is deemed acceptable.

When the generation of status reports is enabled, the decision on
whether or not to generate a requested status report is left to the
discretion of the bundle protocol agent. Mechanisms that could
assist in making such decisions, such as pre-placed agreements
authorizing the generation of status reports under specified
circumstances, are beyond the scope of this specification.

Notes on administrative record terminology:

 A "bundle reception status report" is a bundle status report

with the "reporting node received bundle" flag set to 1.
 A "bundle forwarding status report" is a bundle status report

with the "reporting node forwarded the bundle" flag set to 1.
 A "bundle delivery status report" is a bundle status report

with the "reporting node delivered the bundle" flag set to 1.
 A "bundle deletion status report" is a bundle status report

with the "reporting node deleted the bundle" flag set to 1.

5.2. Bundle Transmission

The steps in processing a bundle transmission request are:

Step 1: Transmission of the bundle is initiated. An outbound bundle
MUST be created per the parameters of the bundle transmission
request, with the retention constraint "Dispatch pending". The

source node ID of the bundle MUST be either the null endpoint ID,
indicating that the source of the bundle is anonymous, or else the
EID of a singleton endpoint whose only member is the node of which
the BPA is a component.

Step 2: Processing proceeds from Step 1 of Section 5.4.

5.3. Bundle Dispatching

The steps in dispatching a bundle are:

Step 1: If the bundle’s destination endpoint is an endpoint of which
the node is a member, the bundle delivery procedure defined in
Section 5.7 MUST be followed and for the purposes of all subsequent
processing of this bundle at this node the node’s membership in the

bundle’s destination endpoint SHALL be disavowed; specifically, even
though the node is a member of the bundle’s destination endpoint,
the node SHALL NOT undertake to forward the bundle to itself in the
course of performing the procedure described in Section 5.4.

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 27]

Step 2: Processing proceeds from Step 1 of Section 5.4.

5.4. Bundle Forwarding

The steps in forwarding a bundle are:

Step 1: The retention constraint "Forward pending" MUST be added to
the bundle, and the bundle’s "Dispatch pending" retention constraint
MUST be removed.

Step 2: The bundle protocol agent MUST determine whether or not
forwarding is contraindicated for any of the reasons listed in
Figure 4. In particular:

 The bundle protocol agent MAY choose either to forward the
bundle directly to its destination node(s) (if possible) or to
forward the bundle to some other node(s) for further
forwarding. The manner in which this decision is made may
depend on the scheme name in the destination endpoint ID and/or
on other state but in any case is beyond the scope of this
document. If the BPA elects to forward the bundle to some other
node(s) for further forwarding but finds it impossible to
select any node(s) to forward the bundle to, then forwarding is
contraindicated.

 Provided the bundle protocol agent succeeded in selecting the
node(s) to forward the bundle to, the bundle protocol agent
MUST select the convergence layer adapter(s) whose services
will enable the node to send the bundle to those nodes. The

manner in which specific appropriate convergence layer adapters
are selected is beyond the scope of this document. If the agent
finds it impossible to select any appropriate convergence layer
adapter(s) to use in forwarding this bundle, then forwarding is
contraindicated.

Step 3: If forwarding of the bundle is determined to be
contraindicated for any of the reasons listed in Figure 4, then the
Forwarding Contraindicated procedure defined in Section 5.4.1 MUST
be followed; the remaining steps of Section 5.4 are skipped at this
time.

Step 4: For each node selected for forwarding, the bundle protocol
agent MUST invoke the services of the selected convergence layer
adapter(s) in order to effect the sending of the bundle to that

node. Determining the time at which the bundle protocol agent
invokes convergence layer adapter services is a BPA implementation
matter. Determining the time at which each convergence layer
adapter subsequently responds to this service invocation by sending

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 28]

the bundle is a convergence-layer adapter implementation matter.
Note that:

 If the bundle contains a flow data label extension block (to be
defined in a future document) then that flow data label value
MAY identify procedures for determining the order in which
convergence layer adapters must send bundles, e.g., considering
bundle source when determining the order in which bundles are
sent. The definition of such procedures is beyond the scope of
this specification.

 If the bundle has a bundle age block, as defined in 4.3.2.
above, then at the last possible moment before the CLA
initiates conveyance of the bundle node via the CL protocol the

bundle age value MUST be increased by the difference between
the current time and the time at which the bundle was received
(or, if the local node is the source of the bundle, created).

Step 5: When all selected convergence layer adapters have informed
the bundle protocol agent that they have concluded their data
sending procedures with regard to this bundle:

 If the "request reporting of bundle forwarding" flag in the
bundle’s status report request field is set to 1, and status
reporting is enabled, then a bundle forwarding status report
SHOULD be generated, destined for the bundle’s report-to
endpoint ID. The reason code on this bundle forwarding status
report MUST be "no additional information".

 If any applicable bundle protocol extensions mandate generation

of status reports upon conclusion of convergence-layer data
sending procedures, all such status reports SHOULD be generated
with extension-mandated reason codes.

 The bundle’s "Forward pending" retention constraint MUST be
removed.

5.4.1. Forwarding Contraindicated

The steps in responding to contraindication of forwarding are:

Step 1: The bundle protocol agent MUST determine whether or not to
declare failure in forwarding the bundle. Note: this decision is
likely to be influenced by the reason for which forwarding is
contraindicated.

Step 2: If forwarding failure is declared, then the Forwarding
Failed procedure defined in Section 5.4.2 MUST be followed.

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 29]

Otherwise, when -- at some future time - the forwarding of this
bundle ceases to be contraindicated, processing proceeds from Step 4
of Section 5.4.

5.4.2. Forwarding Failed

The steps in responding to a declaration of forwarding failure are:

Step 1: The bundle protocol agent MAY forward the bundle back to the
node that sent it, as identified by the Previous Node block, if
present. This forwarding, if performed, SHALL be accomplished by
performing Step 4 and Step 5 of section 5.4 where the sole node
selected for forwarding SHALL be the node that sent the bundle.

Step 2: If the bundle’s destination endpoint is an endpoint of which
the node is a member, then the bundle’s "Forward pending" retention
constraint MUST be removed. Otherwise, the bundle MUST be deleted:
the bundle deletion procedure defined in Section 5.10 MUST be
followed, citing the reason for which forwarding was determined to
be contraindicated.

5.5. Bundle Expiration

A bundle expires when the bundle’s age exceeds its lifetime as
specified in the primary bundle block. Bundle age MAY be determined
by subtracting the bundle’s creation timestamp time from the current
time if (a) that timestamp time is not zero and (b) the local node’s
clock is known to be accurate; otherwise bundle age MUST be obtained

from the Bundle Age extension block. Bundle expiration MAY occur at
any point in the processing of a bundle. When a bundle expires, the
bundle protocol agent MUST delete the bundle for the reason
"lifetime expired": the bundle deletion procedure defined in Section
5.10 MUST be followed.

5.6. Bundle Reception

The steps in processing a bundle that has been received from another
node are:

Step 1: The retention constraint "Dispatch pending" MUST be added to
the bundle.

Step 2: If the "request reporting of bundle reception" flag in the

bundle’s status report request field is set to 1, and status
reporting is enabled, then a bundle reception status report with
reason code "No additional information" SHOULD be generated,
destined for the bundle’s report-to endpoint ID.

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 30]

Step 3: If any block of the bundle is malformed according to this
specification, or if any block has an attached CRC and the CRC
computed for this block upon reception differs from that attached
CRC, then the bundle protocol agent MUST delete the bundle for the
reason "Block unintelligible". The bundle deletion procedure
defined in Section 5.10 MUST be followed and all remaining steps of
the bundle reception procedure MUST be skipped.

Step 4: For each block in the bundle that is an extension block that
the bundle protocol agent cannot process:

 If the block processing flags in that block indicate that a
status report is requested in this event, and status reporting

is enabled, then a bundle reception status report with reason
code "Block unintelligible" SHOULD be generated, destined for
the bundle’s report-to endpoint ID.

 If the block processing flags in that block indicate that the
bundle must be deleted in this event, then the bundle protocol
agent MUST delete the bundle for the reason "Block
unintelligible"; the bundle deletion procedure defined in
Section 5.10 MUST be followed and all remaining steps of the
bundle reception procedure MUST be skipped.

 If the block processing flags in that block do NOT indicate
that the bundle must be deleted in this event but do indicate
that the block must be discarded, then the bundle protocol
agent MUST remove this block from the bundle.

 If the block processing flags in that block indicate neither
that the bundle must be deleted nor that that the block must be

discarded, then processing continues with the next extension
block that the bundle protocol agent cannot process, if any;
otherwise, processing proceeds from step 54.

Step 54: Processing proceeds from Step 1 of Section 5.3.

5.7. Local Bundle Delivery

The steps in processing a bundle that is destined for an endpoint of
which this node is a member are:

Step 1: If the received bundle is a fragment, the application data
unit reassembly procedure described in Section 5.9 MUST be followed.
If this procedure results in reassembly of the entire original
application data unit, processing of this bundle (whose fragmentary

payload has been replaced by the reassembled application data unit)
proceeds from Step 2; otherwise, the retention constraint
"Reassembly pending" MUST be added to the bundle and all remaining
steps of this procedure MUST be skipped.

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 31]

Step 2: Delivery depends on the state of the registration whose
endpoint ID matches that of the destination of the bundle:

 An additional implementation-specific delivery deferral
procedure MAY optionally be associated with the registration.

 If the registration is in the Active state, then the bundle
MUST be delivered automatically as soon as it is the next
bundle that is due for delivery according to the BPA’s bundle
delivery scheduling policy, an implementation matter.

 If the registration is in the Passive state, or if delivery of
the bundle fails for some implementation-specific reason, then
the registration’s delivery failure action MUST be taken.
Delivery failure action MUST be one of the following:

o defer delivery of the bundle subject to this registration
until (a) this bundle is the least recently received of
all bundles currently deliverable subject to this
registration and (b) either the registration is polled or
else the registration is in the Active state, and also
perform any additional delivery deferral procedure
associated with the registration; or

o abandon delivery of the bundle subject to this registration
(as defined in 3.1.).

Step 3: As soon as the bundle has been delivered, if the "request
reporting of bundle delivery" flag in the bundle’s status report
request field is set to 1 and bundle status reporting is enabled,

then a bundle delivery status report SHOULD be generated, destined
for the bundle’s report-to endpoint ID. Note that this status report
only states that the payload has been delivered to the application
agent, not that the application agent has processed that payload.

5.8. Bundle Fragmentation

It may at times be advantageous for bundle protocol agents to reduce
the sizes of bundles in order to forward them. This might be the
case, for example, if a node to which a bundle is to be forwarded is
accessible only via intermittent contacts and no upcoming contact is
long enough to enable the forwarding of the entire bundle.

The size of a bundle can be reduced by "fragmenting" the bundle. To
fragment a bundle whose payload is of size M is to replace it with

two "fragments" -- new bundles with the same source node ID and
creation timestamp as the original bundle -- whose payloads are the
first N and the last (M - N) bytes of the original bundle’s payload,
where 0 < N < M. Note that fragments may themselves be fragmented,

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 32]

so fragmentation may in effect replace the original bundle with more
than two fragments. (However, there is only one ’level’ of
fragmentation, as in IP fragmentation.)

Any bundle whose primary block’s bundle processing flags do NOT
indicate that it must not be fragmented MAY be fragmented at any
time, for any purpose, at the discretion of the bundle protocol
agent. NOTE, however, that some combinations of bundle
fragmentation, replication, and routing might result in unexpected
traffic patterns.

Fragmentation SHALL be constrained as follows:

 The concatenation of the payloads of all fragments produced by
fragmentation MUST always be identical to the payload of the
fragmented bundle (that is, the bundle that is being
fragmented). Note that the payloads of fragments resulting from
different fragmentation episodes, in different parts of the
network, may be overlapping subsets of the fragmented bundle’s
payload.

 The primary block of each fragment MUST differ from that of the
fragmented bundle, in that the bundle processing flags of the
fragment MUST indicate that the bundle is a fragment and both
fragment offset and total application data unit length must be
provided. Additionally, the CRC of the primary block of the
fragmented bundle, if any, MUST be replaced in each fragment by
a new CRC computed for the primary block of that fragment.

 The payload blocks of fragments will differ from that of the

fragmented bundle as noted above.
 If the fragmented bundle is not a fragment or is the fragment

with offset zero, then all extension blocks of the fragmented
bundle MUST be replicated in the fragment whose offset is zero.

 Each of the fragmented bundle’s extension blocks whose “Block
must be replicated in every fragment” flag is set to 1 MUST be
replicated in every fragment.

 Beyond these rules, replication of extension blocks in the
fragments is an implementation matter.

5.9. Application Data Unit Reassembly

If the concatenation -- as informed by fragment offsets and payload
lengths -- of the payloads of all previously received fragments with
the same source node ID and creation timestamp as this fragment,

together with the payload of this fragment, forms a byte array whose
length is equal to the total application data unit length in the
fragment’s primary block, then:

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 33]

 This byte array -- the reassembled application data unit --
MUST replace the payload of this fragment.

 The "Reassembly pending" retention constraint MUST be removed
from every other fragment whose payload is a subset of the
reassembled application data unit.

Note: reassembly of application data units from fragments occurs at
the nodes that are members of destination endpoints as necessary; an
application data unit MAY also be reassembled at some other node on
the path to the destination.

5.10. Bundle Deletion

The steps in deleting a bundle are:

Step 1: If the "request reporting of bundle deletion" flag in the
bundle’s status report request field is set to 1, and if status
reporting is enabled, then a bundle deletion status report citing
the reason for deletion SHOULD be generated, destined for the
bundle’s report-to endpoint ID.

Step 2: All of the bundle’s retention constraints MUST be removed.

5.11. Discarding a Bundle

As soon as a bundle has no remaining retention constraints it MAY be
discarded, thereby releasing any persistent storage that may have
been allocated to it.

5.12. Canceling a Transmission

When requested to cancel a specified transmission, where the bundle
created upon initiation of the indicated transmission has not yet
been discarded, the bundle protocol agent MUST delete that bundle
for the reason "transmission cancelled". For this purpose, the
procedure defined in Section 5.10 MUST be followed.

6. Administrative Record Processing

6.1. Administrative Records

Administrative records are standard application data units that are
used in providing some of the features of the Bundle Protocol. One

type of administrative record has been defined to date: bundle
status reports. Note that additional types of administrative
records may be defined by supplementary DTN protocol specification
documents.

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 34]

Every administrative record consists of:

 Record type code (an unsigned integer for which valid values
are as defined below).

 Record content in type-specific format.

Valid administrative record type codes are defined as follows:

+---------+--+

| Value | Meaning |

+=========+==+

| 1 | Bundle status report. |

+---------+--+

| (other) | Reserved for future use. |

+---------+--+

Figure 3: Administrative Record Type Codes

Each BP administrative record SHALL be represented as a CBOR array
comprising a 2-tuple.

The first item of the array SHALL be a record type code, which SHALL

be represented as a CBOR unsigned integer.

The second element of this array SHALL be the applicable CBOR
representation of the content of the record. Details of the CBOR
representation of administrative record type 1 are provided below.
Details of the CBOR representation of other types of administrative
record type are included in the specifications defining those
records.

6.1.1. Bundle Status Reports

The transmission of "bundle status reports" under specified
conditions is an option that can be invoked when transmission of a
bundle is requested. These reports are intended to provide
information about how bundles are progressing through the system,

including notices of receipt, forwarding, final delivery, and
deletion. They are transmitted to the Report-to endpoints of
bundles.

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 35]

Each bundle status report SHALL be represented as a CBOR array. The
number of elements in the array SHALL be either 6 (if the subject
bundle is a fragment) or 4 (otherwise).

The first item of the bundle status report array SHALL be bundle
status information represented as a CBOR array of at least 4
elements. The first four items of the bundle status information
array shall provide information on the following four status
assertions, in this order:

 Reporting node received bundle.
 Reporting node forwarded the bundle.
 Reporting node delivered the bundle.

 Reporting node deleted the bundle.

Each item of the bundle status information array SHALL be a bundle
status item represented as a CBOR array; the number of elements in
each such array SHALL be either 2 (if the value of the first item of
this bundle status item is 1 AND the "Report status time" flag was
set to 1 in the bundle processing flags of the bundle whose status
is being reported) or 1 (otherwise). The first item of the bundle
status item array SHALL be a status indicator, a Boolean value
indicating whether or not the corresponding bundle status is
asserted, represented as a CBOR Boolean value. The second item of
the bundle status item array, if present, SHALL indicate the time
(as reported by the local system clock, an implementation matter) at
which the indicated status was asserted for this bundle, represented
as a DTN time as described in Section 4.1.6. above.

The second item of the bundle status report array SHALL be the
bundle status report reason code explaining the value of the status
indicator, represented as a CBOR unsigned integer. Valid status
report reason codes are defined in Figure 4 below but the list of
status report reason codes provided here is neither exhaustive nor
exclusive; supplementary DTN protocol specifications (including, but
not restricted to, the Bundle Security Protocol [BPSEC]) may define
additional reason codes.

+---------+--+

| Value | Meaning |

+=========+==+

| 0 | No additional information. |

+---------+--+

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 36]

| 1 | Lifetime expired. |

+---------+--+

| 2 | Forwarded over unidirectional link. |

+---------+--+

| 3 | Transmission canceled. |

+---------+--+

| 4 | Depleted storage. |

+---------+--+

| 5 | Destination endpoint ID unintelligible. |

+---------+--+

| 6 | No known route to destination from here. |

+---------+--+

| 7 | No timely contact with next node on route. |

+---------+--+

| 8 | Block unintelligible. |

+---------+--+

| 9 | Hop limit exceeded. |

+---------+--+

| 10 | Traffic pared (e.g., status reports). |

+---------+--+

| (other) | Reserved for future use. |

+---------+--+

Figure 4: Status Report Reason Codes

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 37]

The third item of the bundle status report array SHALL be the source
node ID identifying the source of the bundle whose status is being
reported, represented as described in Section 4.1.5.2. above.

The fourth item of the bundle status report array SHALL be the
creation timestamp of the bundle whose status is being reported,
represented as described in Section 4.1.7. above.

The fifth item of the bundle status report array SHALL be present if
and only if the bundle whose status is being reported contained a
fragment offset. If present, it SHALL be the subject bundle’s
fragment offset represented as a CBOR unsigned integer item.

The sixth item of the bundle status report array SHALL be present if
and only if the bundle whose status is being reported contained a
fragment offset. If present, it SHALL be the length of the subject
bundle’s payload represented as a CBOR unsigned integer item.

6.2. Generation of Administrative Records

Whenever the application agent’s administrative element is directed
by the bundle protocol agent to generate an administrative record
with reference to some bundle, the following procedure must be
followed:

Step 1: The administrative record must be constructed. If the
administrative record references a bundle and the referenced bundle
is a fragment, the administrative record MUST contain the fragment

offset and fragment length.

Step 2: A request for transmission of a bundle whose payload is this
administrative record MUST be presented to the bundle protocol
agent.

7. Services Required of the Convergence Layer

7.1. The Convergence Layer

The successful operation of the end-to-end bundle protocol depends
on the operation of underlying protocols at what is termed the
"convergence layer"; these protocols accomplish communication
between nodes. A wide variety of protocols may serve this purpose,
so long as each convergence layer protocol adapter provides a

defined minimal set of services to the bundle protocol agent. This
convergence layer service specification enumerates those services.

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 38]

7.2. Summary of Convergence Layer Services

Each convergence layer protocol adapter is expected to provide the
following services to the bundle protocol agent:

 sending a bundle to a bundle node that is reachable via the
convergence layer protocol;

 notifying the bundle protocol agent when it has concluded its
data sending procedures with regard to a bundle;

 delivering to the bundle protocol agent a bundle that was sent
by a bundle node via the convergence layer protocol.

The convergence layer service interface specified here is neither

exhaustive nor exclusive. That is, supplementary DTN protocol
specifications (including, but not restricted to, the Bundle
Security Protocol [BPSEC]) may expect convergence layer adapters
that serve BP implementations conforming to those protocols to
provide additional services such as reporting on the transmission
and/or reception progress of individual bundles (at completion
and/or incrementally), retransmitting data that were lost in
transit, discarding bundle-conveying data units that the convergence
layer protocol determines are corrupt or inauthentic, or reporting
on the integrity and/or authenticity of delivered bundles.

8. Implementation Status

[NOTE to the RFC Editor: please remove this section before
publication, as well as the reference to RFC 7942.]

This section records the status of known implementations of the
protocol defined by this specification at the time of posting of
this Internet-Draft, and is based on a proposal described in RFC
7942. The description of implementations in this section is
intended to assist the IETF in its decision processes in progressing
drafts to RFCs. Please note that the listing of any individual
implementation here does not imply endorsement by the IETF.
Furthermore, no effort has been spent to verify the information
presented here that was supplied by IETF contributors. This is not
intended as, and must not be construed to be, a catalog of available
implementations or their features. Readers are advised to note that
other implementations may exist.

According to RFC 7942, "this will allow reviewers and working groups

to assign due consideration to documents that have the benefit of
running code, which may serve as evidence of valuable
experimentation and feedback that have made the implemented

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 39]

protocols more mature. It is up to the individual working groups to
use this information as they see fit".

At the time of this writing, there are three known implementations
of the current document.

The first known implementation is microPCN (https://upcn.eu/).
According to the developers:

The Micro Planetary Communication Network (uPCN) is a free
software project intended to offer an implementation of Delay-
tolerant Networking protocols for POSIX operating systems (well,
and for Linux) plus for the ARM Cortex STM32F4 microcontroller

series. More precisely it currently provides an implementation of

 the Bundle Protocol (BP, RFC 5050),
 the Bundle Protocol version 7 specification draft (version 6),
 the DTN IP Neighbor Discovery (IPND) protocol, and
 a routing approach optimized for message-ferry micro LEO

satellites.

uPCN is written in C and is built upon the real-time operating
system FreeRTOS. The source code of uPCN is released under the
"BSD 3-Clause License".

The project depends on an execution environment offering link
layer protocols such as AX.25. The source code uses the USB
subsystem to interact with the environment.

The second known implementation is PyDTN, developed by X-works,
s.r.o (https://x-works.sk/). The final third of the implementation
was developed during the IETF 101 Hackathon. According to the
developers, PyDTN implements bundle coding/decoding and neighbor
discovery. PyDTN is written in Python and has been shown to be
interoperable with uPCN.

The third known implementation is "Terra"
(https://github.com/RightMesh/Terra/), a Java implementation
developed in the context of terrestrial DTN. It includes an
implementation of a "minimal TCP" convergence layer adapter.

9. Security Considerations

The bundle protocol security architecture and the available security
services are specified in an accompanying document, the Bundle
Security Protocol specification [BPSEC].

https://upcn.eu/
https://x-works.sk/
https://github.com/RightMesh/Terra/

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 40]

The bpsec extensions to Bundle Protocol enable each block of a
bundle (other than a bpsec extension block) to be individually
authenticated by a signature block (Block Integrity Block, or BIB)
and also enable each block of a bundle other than the primary block
(and the bpsec extension blocks themselves) to be individually
encrypted by a BCB.

Because the security mechanisms are extension blocks that are
themselves inserted into the bundle, the integrity and
confidentiality of bundle blocks are protected while the bundle is
at rest, awaiting transmission at the next forwarding opportunity,
as well as in transit.

Additionally, convergence-layer protocols that ensure authenticity
of communication between adjacent nodes in BP network topology
SHOULD be used where available, to minimize the ability of
unauthenticated nodes to introduce inauthentic traffic into the
network. Convergence-layer protocols that ensure confidentiality of
communication between adjacent nodes in BP network topology SHOULD
also be used where available, to minimize exposure of the bundle's
primary block and other clear-text blocks, thereby offering some
defense against traffic analysis.

Note that, while the primary block must remain in the clear for
routing purposes, the Bundle Protocol can be protected against
traffic analysis to some extent by using bundle-in-bundle
encapsulation to tunnel bundles to a safe forward distribution
point: the encapsulated bundle forms the payload of an encapsulating

bundle, and that payload block may be encrypted by a BCB.

Note that the generation of bundle status reports is disabled by
default because malicious initiation of bundle status reporting
could result in the transmission of extremely large numbers of
bundles, effecting a denial of service attack.

The bpsec extensions accommodate an open-ended range of
ciphersuites; different ciphersuites may be utilized to protect
different blocks. One possible variation is to sign and/or encrypt
blocks using symmetric keys securely formed by Diffie-Hellman
procedures (such as EKDH) using the public and private keys of the
sending and receiving nodes. For this purpose, the key distribution
problem reduces to the problem of trustworthy delay-tolerant
distribution of public keys, a current research topic.

Bundle security MUST NOT be invalidated by forwarding nodes even
though they themselves might not use the Bundle Security Protocol.

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 41]

In particular, while blocks MAY be added to bundles transiting
intermediate nodes, removal of blocks with the "Discard block if it
can't be processed" flag set in the block processing control flags
may cause security to fail.

Inclusion of the Bundle Security Protocol in any Bundle Protocol
implementation is RECOMMENDEDREQUIRED. Use of the Bundle Security
Protocol in Bundle Protocol operations is OPTIONAL, subject to the
following guidelines:

 Every block (that is not a bpsec extension block) of every
bundle SHOULD be authenticated by a BIB citing the ID of the
node that inserted that block. (Note that a single BIB may

authenticate multiple "target" blocks.) BIB authentication MAY
be omitted on (and only on) any initial end-to-end path
segments on which it would impose unacceptable overhead,
provided that satisfactory authentication is ensured at the
convergence layer and that BIB authentication is asserted on
the first path segment on which the resulting overhead is
acceptable and on all subsequent path segments.

 If any segment of the end-to-end path of a bundle will traverse
the Internet or any other potentially insecure communication
environment, then the payload block SHOULD be encrypted by a
BCB on this path segment and all subsequent segments of the
end-to-end path.

10. IANA Considerations

10.1. Additional entries in registry of Bundle Block Types

This document defines the following additional Bundle Protocol
Bblock Ttypes, for which values are to be assigned from the Bundle
Administrative RecordBlock Types namespace [RFC6255]:

Value Name Meaning Reference

----- ------------- ----------------------------- ----------

 7 Previous node Identifies sender This
documentsection 4.3.1

 8 Bundle age Bundle age in seconds This
documentsection 4.3.2

 9 Hop count #prior transmission attempts This
documentsection 4.3.3

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 42]

10.2. New registry of URI scheme types

This document also defines a new URI scheme type field – an unsigned
integer of undefined length – for which IANA is to create and
maintain a new registry named "URI scheme type values". Initial
values for the Bundle Protocol URI scheme type registry are given
below; future assignments are to be made through Expert Review.
Each assignment consists of a URI scheme type name and its
associated value.

Value URI Scheme Type Name Reference

----- ------------------------ -------------------------------

 0 Reserved

 1 dtn This document, Section 10.3

 2 ipn RFC6260, Section 4

3-254 Unassigned

 255 Reserved

10.3. New URI scheme "dtn"

IANA is requested to register a URI scheme with the string "dtn" as
the scheme name, as follows:

URI scheme name: "dtn"

Status: provisional

URI scheme syntax:

This specification uses the Augmented Backus-Naur Form (ABNF)
notation of [RFC5234].

dtn-uri = "dtn:" dtn-hier-part

dtn-hier-part = "//" node-name name-delim demux ; a path-rootless

node-name = 1*VCHAR

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 43]

name-delim = "/"

demux = *VCHAR

None of the reserved characters defined in the generic URI syntax
are used as delimiters within URIs of the DTN scheme.

URI scheme semantics: URIs of the DTN scheme are used as endpoint
identifiers in the Delay-Tolerant Networking (DTN) Bundle Protocol
(BP) as described in Section 4.1.5.1.

Encoding considerations: URIs of the DTN scheme are encoded
exclusively in US-ASCII characters.

Applications and/or protocols that use this URI scheme name: the
Delay-Tolerant Networking (DTN) Bundle Protocol (BP).

Interoperability considerations: as noted above, URIs of the DTN
scheme are encoded exclusively in US-ASCII characters.

Security considerations:

 Reliability and consistency: none of the BP endpoints
identified by the URIs of the DTN scheme are guaranteed to be
reachable at any time, and the identity of the processing
entities operating on those endpoints is never guaranteed by
the Bundle Protocol itself. Bundle authentication as defined by
the Bundle Security Protocol is required for this purpose.

 Malicious construction: malicious construction of a conformant
DTN-scheme URI is limited to the malicious selection of node
names and the malicious selection of demux strings. That is, a
maliciously constructed DTN-scheme URI could be used to direct
a bundle to an endpoint that might be damaged by the arrival of
that bundle or, alternatively, to declare a false source for a
bundle and thereby cause incorrect processing at a node that
receives the bundle. In both cases (and indeed in all bundle
processing), the node that receives a bundle should verify its
authenticity and validity before operating on it in any way.

 Back-end transcoding: the limited expressiveness of URIs of the
DTN scheme effectively eliminates the possibility of threat due
to errors in back-end transcoding.

 Rare IP address formats: not relevant, as IP addresses do not
appear anywhere in conformant DTN-scheme URIs.

 Sensitive information: because DTN-scheme URIs are used only to
represent the identities of Bundle Protocol endpoints, the risk
of disclosure of sensitive information due to interception of
these URIs is minimal. Examination of DTN-scheme URIs could be

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 44]

used to support traffic analysis; where traffic analysis is a
plausible danger, bundles should be conveyed by secure
convergence-layer protocols that do not expose endpoint IDs.

 Semantic attacks: the simplicity of DTN-scheme URI syntax
minimizes the possibility of misinterpretation of a URI by a
human user.

Contact:

 Scott Burleigh

 Jet Propulsion Laboratory,

 California Institute of Technology

 scott.c.burleigh@jpl.nasa.gov

 +1 (800) 393-3353

Author/Change controller:

 Scott Burleigh

 Jet Propulsion Laboratory,

 California Institute of Technology

 scott.c.burleigh@jpl.nasa.gov

11. References

11.1. Normative References

[BPSEC] Birrane, E., "Bundle Security Protocol Specification", Work
In Progress, October 2015.

[CRC16] ITU-T Recommendation X.25, p. 9, section 2.2.7.4,
International Telecommunications Union, October 1996.

[CRC32C] Castagnoli, G., Brauer, S., and M. Herrmann, "Optimization
of Cyclic Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE
Transact. on Communications, Vol. 41, No. 6, June 1993.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 45]

[RFC6255] Blanchet, M., "Delay-Tolerant Networking Bundle Protocol
IANA Registries", RFC 6255, May 2011.

[RFC7049] Borman, C. and P. Hoffman, "Concise Binary Object
Representation (CBOR)", RFC 7049, October 2013.

[URI] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", RFC 3986, STD 66,
January 2005.

[URIREG] Thaler, D., Hansen, T., and T. Hardie, "Guidelines and
Registration Procedures for URI Schemes", RFC 7595, BCP 35, June
2015.

11.2. Informative References

[ARCH] V. Cerf et al., "Delay-Tolerant Network Architecture", RFC
4838, April 2007.

[BIBE] Burleigh, S., "Bundle-in-Bundle Encapsulation", Work In
Progress, June 2017.

[BPSEC] Birrane, E., "Bundle Security Protocol Specification", Work
In Progress, October 2015.

[RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
Identifiers (IRIs)", RFC 3987, January 2005.

[RFC6255] Blanchet, M., "Delay-Tolerant Networking Bundle Protocol
IANA Registries", RFC 6255, May 2011.

[RFC7143] Chadalapaka, M., Satran, J., Meth, K., and D. Black,
"Internet Small Computer System Interface (iSCSI) Protocol
(Consolidated)", RFC 7143, April 2014.

[SIGC] Fall, K., "A Delay-Tolerant Network Architecture for
Challenged Internets", SIGCOMM 2003.

[UTC] Arias, E. and B. Guinot, "Coordinated universal time UTC:
historical background and perspectives" in "Journees systemes de
reference spatio-temporels", 2004.

12. Acknowledgments

This work is freely adapted from RFC 5050, which was an effort of
the Delay Tolerant Networking Research Group. The following DTNRG
participants contributed significant technical material and/or

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 46]

inputs to that document: Dr. Vinton Cerf of Google, Scott Burleigh,
Adrian Hooke, and Leigh Torgerson of the Jet Propulsion Laboratory,
Michael Demmer of the University of California at Berkeley, Robert
Durst, Keith Scott, and Susan Symington of The MITRE Corporation,
Kevin Fall of Carnegie Mellon University, Stephen Farrell of Trinity
College Dublin, Howard Weiss and Peter Lovell of SPARTA, Inc., and
Manikantan Ramadas of Ohio University.

This document was prepared using 2-Word-v2.0.template.dot.

13. Significant Changes from RFC 5050

Points on which this draft significantly differs from RFC 5050

include the following:

 Clarify the difference between transmission and forwarding.
 Migrate custody transfer to the bundle-in-bundle encapsulation

specification [BIBE].
 Introduce the concept of "node ID" as functionally distinct

from endpoint ID, while having the same syntax.
 Restructure primary block, making it immutable. Add optional

CRC.
 Add optional CRCs to non-primary blocks.
 Add block ID number to canonical block format (to support

streamlined BSP).
 Add bundle age extension block, defined in this specification.
 Add previous node extension block, defined in this

specification.

 Add flow data label extension block, *not* defined in this
specification.

 Add manifest extension block, *not* defined in this
specification.

 Add hop count extension block, defined in this specification.
 Migrate Quality of Service markings to a new QoS extension

block, *not* defined in this specification.
 Change from SDNVs to CBOR representation.

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 47]

Appendix A. For More Information

Please refer comments to dtn@ietf.org. DTN Working Group documents
are located at https://datatracker.ietf.org/wg/dtn/documents. The
original Delay Tolerant Networking Research Group (DTNRG) Web site
is located at https://irtf.org/concluded/dtnrg.

Copyright (c) 2019 IETF Trust and the persons identified as authors
of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, is permitted pursuant to, and subject to the license
terms contained in, the Simplified BSD License set forth in Section

4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info).

https://datatracker.ietf.org/wg/dtn/documents
https://irtf.org/concluded/dtnrg

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 48]

Appendix B. CDDL expression

For informational purposes, Carsten Bormann and Brian Sipos have
kindly provided an expression of the Bundle Protocol specification
in the Concise Data Definition Language (CDDL). That CDDL
expression is presented below. Note that wherever the CDDL
expression is in disagreement with the textual representation of the
BP specification presented in the earlier sections of this document,
the textual representation rules.

start = bundle / #6.55799(bundle)

; Times before 2000 are invalid

dtn-time = uint

; CRC enumerated type

crc-type = &(

 crc-none: 0,

 crc-16bit: 1,

 crc-32bit: 2

)

; Either 16-bit or 32-bit

crc-value = (bstr .size 2) / (bstr .size 4)

creation-timestamp = [

 dtn-time, ; absolute time of creation

 sequence: uint ; sequence within the time

]

eid = $eid .within eid-structure

eid-structure = [

 uri-code: uint,

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 49]

 SSP: any

]

$eid /= [

 uri-code: 1,

 SSP: (tstr / 0)

]

$eid /= [

 uri-code: 2,

 SSP: [

 nodenum: uint,

 servicenum: uint

]

]

; The root bundle array

bundle = [primary-block, *extension-block, payload-block]

primary-block = [

 version: 7,

 bundle-control-flags,

 crc-type,

 destination: eid,

 source-node: eid,

 report-to: eid,

 creation-timestamp,

 lifetime: uint,

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 50]

 ? (

 fragment-offset: uint,

 total-application-data-length: uint

),

 ? crc-value,

]

bundle-control-flags = uint .bits bundleflagbits

bundleflagbits = &(

 reserved: 15,

 reserved: 14,

 reserved: 13,

 bundle-deletion-status-reports-are-requested: 12,

 bundle-delivery-status-reports-are-requested: 11,

 bundle-forwarding-status-reports-are-requested: 10,

 reserved: 9,

 bundle-reception-status-reports-are-requested: 8,

 bundle-contains-a-Manifest-block: 7,

 status-time-is-requested-in-all-status-reports: 6,

 user-application-acknowledgement-is-requested: 5,

 reserved: 4,

 reserved: 3,

 bundle-must-not-be-fragmented: 2,

 payload-is-an-administrative-record: 1,

 bundle-is-a-fragment: 0

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 51]

)

; Abstract shared structure of all non-primary blocks

canonical-block-structure = [

 block-type-code: uint,

 block-number: uint,

 block-control-flags,

 crc-type,

 ; Each block type defines the content within the bytestring

 block-type-specific-data,

 ? crc-value

]

block-control-flags = uint .bits blockflagbits

blockflagbits = &(

 reserved: 7,

 reserved: 6,

 reserved: 5,

 reserved: 4,

 bundle-must-be-deleted-if-block-cannot-be-processed: 3,

 status-report-must-be-transmitted-if-block-cannot-be-processed: 2,

 block-must-be-removed-from-bundle-if-it-cannot-be-processed: 1,

 block-must-be-replicated-in-every-fragment: 0

)

block-type-specific-data = bstr / #6.24(bstr)

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 52]

; Actual CBOR data embedded in a bytestring, with optional tag to
indicate so

embedded-cbor<Item> = (bstr .cbor Item) / #6.24(bstr .cbor Item)

; Extension block type, which does not specialize other than the
code/number

extension-block = $extension-block-structure .within canonical-
block-structure

; Generic shared structure of all non-primary blocks

extension-block-use<CodeValue, BlockData> = [

 block-type-code: CodeValue,

 block-number: (uint .gt 1),

 block-control-flags,

 crc-type,

 BlockData,

 ? crc-value

]

; Payload block type

payload-block = payload-block-structure .within canonical-block-
structure

payload-block-structure = [

 block-type-code: 1,

 block-number: 1,

 block-control-flags,

 crc-type,

 $payload-block-data,

 ? crc-value

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 53]

]

; Arbitrary payload data, including non-CBOR bytestring

$payload-block-data /= block-type-specific-data

; Administrative record as a payload data specialization

$payload-block-data /= embedded-cbor<admin-record>

admin-record = $admin-record .within admin-record-structure

admin-record-structure = [

 record-type-code: uint,

 record-content: any

]

; Only one defined record type

$admin-record /= [1, status-record-content]

status-record-content = [

 bundle-status-information,

 status-report-reason-code: uint,

 source-node-eid: eid,

 subject-creation-timestamp: creation-timestamp,

 ? (

 subject-payload-offset: uint,

 subject-payload-length: uint

)

]

bundle-status-information = [

 reporting-node-received-bundle: status-info-content,

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 54]

 reporting-node-forwarded-bundle: status-info-content,

 reporting-node-delivered-bundle: status-info-content,

 reporting-node-deleted-bundle: status-info-content

]

status-info-content = [

 status-indicator: bool,

 ? timestamp: dtn-time

]

; Previous Node extension block

$extension-block-structure /=

 extension-block-use<7, embedded-cbor<ext-data-previous-node>>

ext-data-previous-node = eid

; Bundle Age extension block

$extension-block-structure /=

 extension-block-use<8, embedded-cbor<ext-data-bundle-age>>

ext-data-bundle-age = uint

; Hop Count extension block

$extension-block-structure /=

 extension-block-use<9, embedded-cbor<ext-data-hop-count>>

ext-data-hop-count = [

 hop-limit: uint,

 hop-count: uint

]

Internet-Draft Bundle Protocol Version 7 July 2019

Burleigh Expires January 2020 [Page 55]

Authors’ Addresses

Scott Burleigh
Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109-8099
US
Phone: +1 818 393 3353
Email: Scott.C.Burleigh@jpl.nasa.gov

Kevin Fall
Roland Computing Services
3871 Piedmont Ave. Suite 8

Oakland, CA 94611
US
Email: kfall+rcs@kfall.com

Edward J. Birrane
Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Rd
Laurel, MD 20723
US
Phone: +1 443 778 7423
Email: Edward.Birrane@jhuapl.edu

mailto:Scott.C.Burleigh@jpl.nasa.gov
mailto:
mailto:Edward.Birrane@jhuapl.edu

