dyncast Y. Li

Internet-Draft L. Iannone

Intended status: Informational D. Trossen

Expires: August 19, 2021 Huawei Technologies

 P. Liu

 China Mobile

 February 15, 2021

 Dynamic-Anycast Architecture

 draft-li-dyncast-architecture-00

Abstract

 This document describes a proposal for an architecture for the

 Dynamic-Anycast (Dyncast). It includes an architecture overview,

 main components that shall exist, and the workflow. An example of

 workflow is provided, focusing on the load-balance multi-edge based

 service use-case, where load is distributed in terms of both

 computing and networking resources through the dynamic anycast

 architecture.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 19, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

Li, et al. Expires August 19, 2021 [Page 1]

Internet-Draft Dyncast Architecture February 2021

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 2. Definition of Terms . 3

 3. Architecture Main Concepts 4

 4. Dyncast Architecture Workflow 8

 4.1. Service Notification/Metrics Update 8

 4.2. Service Demand Dispatch and Instance Affinity 9

 4.2.1. Service Demand Dispatch and Instance Affinity on

 D-Routers ingress 10

 4.2.2. Service Demand Dispatch and Instance Affinity on

 D-Forwarders ingress 11

 5. Dyncast Control-plane vs Data-plane operations 13

 6. Summary . 13

 7. Security Considerations 14

 8. IANA Considerations . 14

 9. References . 14

 9.1. Informative References 14

 9.2. Informative References 14

 Acknowledgements . 14

 Authors' Addresses . 14

1. Introduction

 Edge computing is expanding from a single edge nodes to multiple

 networked collaborating edge nodes to solve the issues like response

 time, resource optimization, and network efficiency.

 The current network architecture in edge computing provides

 relatively static service dispatching, for example, to the closest

 edge from an IGP perspective, or to the server with the most

 computing resources without considering the network status, and even

 sometimes just based on static configuration.

 Networking taking into account computing resource metrics seems to be

 an interesting approach that fits numbers of use-cases that would

 benefit from such capability [I-D.liu-dyncast-ps-usecases]. Yet,

 more investigation is still needed in key areas for this approach
 and, to this end, this document aims at providing an architectural

 framework, which will enable service notification, status update, and

 service dispatch in edge computing.

Li, et al. Expires August 19, 2021 [Page 2]

Internet-Draft Dyncast Architecture February 2021

 The Dyncast architecture presents an anycast-based service and access

 model addressing the problematic aspects of existing network layer

 edge computing service deployments, including the unawareness of

 computing resource information of a service, static edge selection,

 isolated network and computing metrics, and/or slow refresh of status.

 Dyncast assumes that there are multiple equivalent service instances

 running on different edge nodes, globally providing (from a logical

 point of view) one single service

. A single edge may have limited

 computing resources available, and different edges likely have

 different resources available, such as CPU or GPU. The main

 principle of Dyncast is that multiple edge nodes are interconnected

 and collaborate with each other to achieve a holistic objective,

 namely to dispatch service demands taking into account both service

 instances status as well as network state (e.g., paths length and

 their congestion). For this, computing resources available to serve

 a request is one of the top metrics to be considered. At the same

 time, the quality of the network path to an edge node may vary over

 time and may hence be another key attribute to be considered for said

 dispatching of service demands.

2. Definition of Terms

 Dyncast: As defined in [I-D.liu-dyncast-ps-usecases], Dynamic

 Anycast, taking the dynamic nature of computing resource metrics

 into account to steer an anycast routing decision.

 Service: As defined in [I-D.liu-dyncast-ps-usecases], a service

 represents a defined endpoint

 of functionality encoded according to

 the specification for said service.

 Service instance: As defined in [I-D.liu-dyncast-ps-usecases], one

 service can have several instances running on different nodes

.

 Service instance is a running environment (e.g., a node) that makes

 the functionality of a service available.

 D-Router: A node supporting Dyncast functionalities as described in

 this document. Namely it is able to understand both network-

 related and service-instances-related metrics, take forwarding

 decision based upon and maintain instance affinity, i.e., forwards

 packets belonging to the same service demand to the same service instance.

 D-MA: Dyncast Metric Agent (D-MA): A dyncast specific agent that is able to

 gather and send

metric updates (from both network and instance

 perspectives) but not performing forwarding decisions. May run on a

 D-Router, but it can be also implemented as a separate module

 (e.g., a software library) collocated with a service instance.

Li, et al. Expires August 19, 2021 [Page 3]

Internet-Draft Dyncast Architecture February 2021

 D-Forwarder: An optional element able to forward packets towards a

 service instance, while not receiving any metric and as such not

 being able to make any decision when a new service demand arrives.

 it relies on a D-Router for the decision, it only guarantees

 instance affinity.

 D-SID

: Dyncast Service ID

, an identifier representing a service,

 which the clients use to access the said service. Such identifier

 is common to all the instances of the same service, no matter on

 where they are actually running. D-SID is independent of which

 service instance serves the service demand. Usually multiple

 instances provide a (logically) single service, and service demands

 are dispatched to the different instances through an anycast model,

 i.e., choosing one instance among all available instances.

 D-BID: Dyncast Binding D-Node

, an address to reach a service

 instance for a given D-SID. It is usually a unicast IP where

 service instances are attached. Different service instances

 provide the same service identified by a D-SID but with

 different D-BIDs.

 Service demand: A demand for a specific service and addressed to a

 specific D-SID

.

 Service request: A request for a specific service and addressed

 to

 a specific service instance identified with D-BID.

3. Architecture Main Concepts

 Edge sites (edges for short) are normally the sites where edge

 computing is performed. Service instances are initiated at different

 edge sites. Thus, a single service may have a significant

 number of instances running on different edges as a function of local deployment. A Dyncast Service ID

 (D-SID) is used to uniquely identify a service

 (e.g., a matrix

 computation for face recognition or a game server). Service

 instances can be hosted on servers, virtual machines, access routers

 or gateways in edge data centers.

 Close to (one or more) Service instances is the Dyncast Metric Agent

 (D-MA). This element has the task to gather information about

 resources and status of the different instances as well as network-

 related information.

Such element may also run in a dyncast-enabled
 router (named D-Router), while other deployment scenarios may lead

 to this element running separately on edge nodes.

 A D-Router is the main element in a Dyncast network,

 providing the capability to exchange the

information about the

 computing resources information of service instances which have been

Li, et al. Expires August 19, 2021 [Page 4]

Internet-Draft Dyncast Architecture February 2021

 gathered through D-MAs. A D-Router can also be a service access

 point for clients
. When a service demand arrives, it will be

 delivered to the most appropriate

service instance. A service demand

 may be the first packet of a data flow rather than an explicit out of

 band service request. This architectural document does not make any

 specific assumption on this matter. This documents only assumes

 that:

 o D-Routers are able to identify new service demands
. The Dyncast

 architecture presented in this document allows then to deliver

 such a packet to the most appropriate service instance according

 to information received from D-MAs and other D-Routers.

 o D-Router are able to identify packets belonging to an existing

 service demand. The Dyncast architecture presented in this

 document allows to deliver these packets always to the same

 service instance selected at the initial service demand. We term

 this capability as 'instance affinity'.

 The elements introduced above are depicted in Figure 1, which shows

 the proposed Dyncast architecture. In Figure 1, the "infrastructure"

 indicates the general IP infrastructure that does not necessarily

 need to support Dyncast, i.e., not all routers of the infrastructure

 need to be D-Routers.

Li, et al. Expires August 19, 2021 [Page 5]

Internet-Draft Dyncast Architecture February 2021

 edge site 1 edge site 2 edge site 3

 +------------+ +------------+

 +------------+ | +------------+ |

 | service | | | service | |

 | instance |-+ | instance |-+

 +------------+ +------------+

 | |

 +----------+ |

 | D-MA

| |

 +----------+ +----------+

 | +-----------------+ | D-MA |

 +----------+ | | +----------+

 |D-Router 1| ----| Infrastructure |---- |D-Router 3|

 +----------+ | | +----------+

 | +-----------------+ |

 | | |

 | | |

 +-----------+ +----------+ |

 |D-Forwarder| |D-Router 2| |

 +-----------+ +----------+ |

 | | |

 | | |

 +-----+ +------+ +------+

 +------+| +------+ | +------+ |

 |client|+ |client|-+ |client|-+

 +------+ +------+ +------+

 Figure 1: Dyncast Architecture.

 Figure 2 shows an example of Dyncast deployment, with 2 service

 instantiated twice (2 instances) on two different edges, namely edge

 site 2 and 3. Those service instances utilize different D-BIDs to

 serve service demands. The edge site 3 uses a standalone D-MA to

 report its metrics to the Dyncast system and, since no client is

 present at that edge, there is no need of a D-Router. Edge site 2

 instead, collocates the D-MA with a D-router since client are

 present.

Li, et al. Expires August 19, 2021 [Page 6]

Internet-Draft Dyncast Architecture February 2021

 D-SID: Dyncast Service ID

 D-BID: Dyncast Binding ID

 Service/Metrics Information

 (D-SID 1, D-BID 21, <metrics>)

 (D-SID 2, D-BID 22, <metrics>)

 <----------------->

 +-------+

 +-------+ | D-SID 1

 |Clients|-+ +--------+

 +-------+ +--|D-BID 21| instance 1

 | | +--------+

 +----------+----+ | Edge 2

 |D-Router 2|D-MA|--| D-SID 2

 +----------+----+ | +--------+

 | +--|D-BID 22| instance 2

 +----------------+ +--------+

 | |

 | |

 +------+ +----------+ | |

 |Client|--|D-Router 1|--| Infrastructure |

 +------+ +----------+ | |

 | | D-SID 2

 | | +--------+

 +----------------+ +---|D-BID 32| instance 3

 | | +--------+

 | +------+ Edge 3

 +-------| D-MA |

 +------+ D-SID 1

 | +--------+

 +---|D-BID 31| instance 4

 +--------+

 <---------------------------------->

 (D-SID 2, D-BID 32, <metrics>)

 (D-SID 1, D-BID 31, <metrics>)

 Service/Metrics Information

 Figure 2: Dyncast deployment example.

 In Figure 2, the Dyncast Service ID (D-SID) follows an anycast

 semantic, such as provided through an IP anycast address. It is used

 to access a specific service no matter which service instance

 eventually handles the service demand of the client. Clients or

 other entities which want to access a service need to know about its

 D-SID in advance.

 It can be achieved in different ways, for example,

Li, et al. Expires August 19, 2021 [Page 7]

Internet-Draft Dyncast Architecture February 2021

 using a special range of addresses associated to a certain service or

 coding of anycast IP address as D-SID, or using DNS

.

 The Dyncast Binding ID (D-BID) is a unicast IP address. It is

 usually the interface IP address through to reach a specific service

 instance. Mapping and binding a D-SID to a D-BID is dynamic and

 depends on the computing and network status at the time the service

 demand first arrives (see Section 4.1 for the reporting of such

 status)

. To ensure instance affinity, D-Routers are requested to

 remember the instance that has been selected (e.g., by storing the

 mapping) for delivering all packets to the same instance

(see

 Section 4.2 for discussing this aspect).

4. Dyncast Architecture Workflow

 The following subsections provide an overview of how the

 architectural elements introduced in the previous section do work

 together.

4.1. Service Notification/Metrics Update

 When a service instance is instantiated/terminated
, the service

 information consisting in the mapping between the D-SID and the D-BID

 has to be updated/deletetd as well

. An update can also be triggered

 by a change in relevant metrics (e.g., an instance becomes

 overloaded). Computing resource information of service instance is

 key information in Dyncast. Some of them may be relatively static

 like CPU/GPU capacity, and some may be very dynamic, for example,

 CPU/GPU utilization, number of sessions associated, number of queuing

 requests. Changes in service-related relevant information has to be

 collected by D-MA associated for each service instance. Various ways

 can be used, for example, via routing protocols like EBGP or via an

 API of a management system. Conceptually a D-Router collects

 information coming from D-MA and keeps track of the IDs and computing

 metrics of all service instances.

 Figure 2 shows an example of information shared by the Dyncast

 elements. The D-MA which is deployed with D-Router2 shares binding

 information concerning the two instances of the two services running

 on edge 2 (upper right hand side of the figure). These information

 is:

 o (D-SID 1, D-BID 21, metrics)

 o (D-SID 2, D-BID 22, metrics)

 The D-MA which is deployed as a separate module on edge 3 (lower

 right hand side of the figure) shares binding information concerning

Li, et al. Expires August 19, 2021 [Page 8]

Internet-Draft Dyncast Architecture February 2021

 the two instances of the two services running on edge 3. These

 information is:

 o (D-SID 1, D-BID 31, metrics)

 o (D-SID 2, D-BID 32, metrics)

 Dyncast nodes share among themselves the service information

 including the associated computing metrics for the service instances

 attached to them.

A D-Router can also monitor the

 network cost or metrics (e.g., congestion) to reach other D-Routers.

 This is the focus of Dyncast control plane. Different mechanisms can

 be used to share such information, for instance BGP ([RFC4760]), an

 IGP, or a controller based mechanism. The specific mechanism is

 beyond the scope of this document. The architecture assumes that the

 Dyncast elements are able to share and discover relevant information.

 If, for instance, the client on the left hand side of Figure 2 sends

 a service demand for D-SID1, D-Router1 has the knowledge of the

 status of the service instances on both edge 2 and edge 3 and can make

 a decision toward which D-BID to forward the demand.

 There are different ways to represent the computing metrics. A

 single digitalized value calculated from weighted attributes like

 CPU/GPU consumption and/or number of sessions associated may be used

 for simplicity reasons. However, it may not accurately reflect the

 computing resources of interest. Multi-dimensional values give finer

 information. This architectural document does not make any specific

 assumption about metrics and how to encode or even use them. As

 stated in Section 3, the only assumption is that a D-Node is able to

 use such metrics so to take a decision when a service demand arrives

 in order to map the demand onto a suitable service request.

 As explained in the problem statement document

 [I-D.liu-dyncast-ps-usecases], computing metrics may change very

 frequently, when and how frequent such information should be

 exchanged among Dyncats elements should be determined also in

 accordance with the distribution protocol used for such purpose. A

 spectrum of approaches can be employed, such as interval based

 updates, threshold triggered updates, policy based updates, etc.

4.2. Service Demand Dispatch and Instance Affinity

 This is the focus of the Dyncast data plane. When a new flow

 (representing a service demand) arrives at a Dyncast ingress, such

 ingress node selects the most appropriate egress according to the

 network status and the computing resource of the attached service

 instances.

Li, et al. Expires August 19, 2021 [Page 9]

Internet-Draft Dyncast Architecture February 2021

 In the Dyncast architecture there are two possible type of ingress,

 namely D-Routers and D-Forwarders, which are discussed in the

 following.

4.2.1. Service Demand Dispatch and Instance Affinity on D-Routers

 ingress

 Instance affinity is one of the key features that Dyncast should

 support. It means that packets from the same 'flow' for a service

 should always be sent to the same egress to be processed by the same

 service instance. The affinity is determined at the time of newly

 formulated service demand.

 It is worth noting that different services may have different notions

 of what constitutes a 'flow' and may thus identify a flow

 differently. Typically a flow is identified by the 5-tuple value.

 However, for instance, an RTP video streaming may use different port

 numbers for video and audio, and it may be identified as two flows if

 5-tuple flow identifier is used. However they certainly should be

 treated by the same service instance. Therefore a 3-tuple based flow

 identifier is more suitable for this case. Hence, it is desired to

 provide certain level of flexibility in identifying flows, or from a

 more general perspective, in identifying the set of packets for which

 to apply instance affinity. More importantly, the means for

 identifying a flow for the purpose of ensuring instance affinity must

 be application-independent to avoid the need for service-specific

 instance affinity methods.

 Specifically, Instance affinity information should be configurable on

 a per-service basis. For each service, the information can include

 the flow/packets identification type and means, affinity timeout

 value, and etc. For instance, the affinity configuration can

 indicate what are the values, e.g., 5-tuple or 3-tuple, to be used as

 the flow identifier.

 When the most appropriate egress and service instance is determined

 when a new flow for a service demand arrives, a binding table should

 save this association between new service demand and service instance

 selection. The information in such binding table may include flow/

 packets identification, affinity timeout value, etc. The subsequent

 packets matching the entry are forwarded based on the table.

 Figure 3 shows a possible example of flow binding table at the

 ingress D-Router.

Li, et al. Expires August 19, 2021 [Page 10]

Internet-Draft Dyncast Architecture February 2021

 +---+----------------+--------+

 | Flow/Packets Identifier | | |

 +------+--------+---------+--------+------+ D-BID egress | timeout|

 |src_IP| dst_IP |src_port |dst_port|proto | | |

 +------+--------+---------+--------+------+----------------+--------+

 | X | D-SID 2| - | 8888 | tcp
| D-BID 32 | xxx |

 +------+--------+---------+--------+------+----------------+--------+

 | Y | D-SID 2| - | 8888 | tcp | D-BID 12 | xxx |

 +------+--------+---------+--------+------+----------------+--------+

 Figure 3: Example of what a binding table can look like.

4.2.2. Service Demand Dispatch and Instance Affinity on D-Forwarders

 ingress

 When a D-Router maintains the binding table, the memory consumed is

 determined by the number of different service demands that a Dyncast

 ingress node handles. The ingress node can be an edge data center

 gateway, hence it may cover hundreds of thousands of users and each

 user may have tens of flows, creating a concern regarding the memory

 space consumption for the binding table at the Dyncast ingress node.

 To alleviate that concern, the Dyncast Forwarder (D-Forwarder for

 short) can be used and take an active role.

 The D-Forwarder is deployed closer to the clients and it normally

 handles the traffic and service demands of a single or a few clients.

 In this case, the memory required by the binding table will be much

 smaller since the number of entries is now limited to the number of

 local clients only. Furthermore, the D-Forwarder is not a D-Router,

 that is to say, it does not participate in the status update about

 network and computing metrics among D-Routers. A D-Forwarder does

 not determine the best egress to forward packets when there is a new

 service demand. Instead, it has to learn such information from a

 D-Router and maintains it to ensure the instance affinity for

 subsequent packets. In this way, the D-routers may be relieved from

 binding table maintenance.

 Figure 4 shows the interaction between D-Forwarders and D-Routers.

 The figures show a scenario similar to Figure 2, with the addition of

 a D-Forwarder in front of D-Router1. When a new service demand

 arrives at a D-Forwarder, the latter has no suitable entry in its

 binding table that allows forwarding the packet to an egress. As a

 consequence, the D-Forwarder forwards the service demand to a

 D-Router, while marking the 'miss' of matching the demand onto a

 suitable binding address in the forwarded packet. Upon receiving the

 service demand, the D-Router, having access to all of the relevant

 metric information, will select the most suitable egress, i.e.,

 service instance, and forward the packet as a service request to the

Li, et al. Expires August 19, 2021 [Page 11]

Internet-Draft Dyncast Architecture February 2021

 chosen service instance. Based on the 'miss' indication in the

 received service demand, the D-Router will also inform the

 D-Forwarder about the selected egress. This will allow the

 D-Forwarder to maintain the binding table to ensure the mapping of

 any subsequent service demand.

 The control messages exchange between the D-Forwarder and its

 corresponding D-Router needs to be defined, but is out of the scope

 of this document. D-Routers have to be also able to inform

 D-Forwarders if there is any issue concerning packet delivery. For

 instance, an ingress D-Router may find out that the traffic from the

 D-Forwarder is going to an unreachable egress, e.g., due to node

 failure. In such a case, it should inform the D-Forwarder about the

 issue as soon as possible. The information exchange may also contain

 possible countermeasures.

 D-SID: Dyncast Service ID

 D-BID: Dyncast Binding ID

 +-------+

 +-------+ | D-SID 1

 |Clients|-+ +--------+

 +-------+ +--|D-BID 21|

 | | +--------+

 +----------+----+ |

 |D-Router 2|D-MA|--| D-SID 2

 +------+ +----------+----+ | +--------+

 |Client| | +--|D-BID 22|

 +------+ +----------------+ +--------+

 | Service Demand | |

 | (Flow X, D-SID 2) | |

 | ---------------> | |

 +-----------+ +----------+ | |

 |D-Forwarder|-----|D-Router 1|--| Infrastructure |

 +-----------+ +----------+ | |

 | <--------------- | |

 |(Flow X, D-SID 2, D-BID 32) | | D-SID 2

 | Binding Info | | +--------+

 +------+ +----------------+ +---|D-BID 32|

 |Client| | | +--------+

 +------+ | +------+

 +-------| D-MA |

 +------+ D-SID 1

 | +--------+

 +---|D-BID 31|

 +--------+

 Figure 4: Service Demand in presence of a D-Forwarder

Li, et al. Expires August 19, 2021 [Page 12]

Internet-Draft Dyncast Architecture February 2021

5. Dyncast Control-plane vs Data-plane operations

 In summary, Dyncast consists of the following Control-plane and Data-

 plane operations:

 o Dyncast Control Plane:

 * Dyncast Service ID Notification: the D-SID, an anycast IP

 address, should be available and known. This can be achieved

 in different ways. For example, use a special range or coding

 of anycast IP address as service IDs or using the DNS.

 * Dyncast Binding ID Notification: the mapping of (D-SID, D-BID),

 i.e., service ID and the binding address, should be notified to

 the D-Routers when the service instance starts (or stops).

 Various ways can be used, for example, EBGP or management

 system notification.

 * Metrics Notification: D-MA have to be able to share the metrics

 for a service and its binding ID so that D-Routers can select

 the "best" instance for each new service demand.

 * Mapping Update Notification: D-Router notifies D-Forwarder of

 incoming service demand of mapping from service ID to binding

 IP according to the local metric information. This

 notification is sent upon receiving a service demand (from

 D-Forwarder) with 'miss' indication.

 o Dyncast Data Plane:

 * New service demand: an ingress D-Router selects the most

 appropriate egress in terms of the network status and the

 computing resources of the instances of the requested service.

 An ingress D-Forwarder selects the binding address information

 for the received service ID, if available. Otherwise, the

 service demand is forwarded with 'miss' indication set.

 * Instance Affinity: Make sure the subsequent packets of an

 existing service demand are always delivered to the same

 service instance so that they can be served by the same service

 instance.

6. Summary

 This draft introduces a Dyncast architecture that enables the service

 demand to be sent to an optimal service instance. It can dynamically

 adapt to the computing resources consumption and network status

 change. Dyncast is a network based architecture that supports a

Li, et al. Expires August 19, 2021 [Page 13]

Internet-Draft Dyncast Architecture February 2021

 large number of edges and is independent of the applications or

 services hosted on the edge.

 More discussion and input on control plane and data plane approach

 are welcome.

7. Security Considerations

 The computing resource information changes over time very frequent

 with the creation and termination of service instance. When such

 information is carried in routing protocol, too many updates can make

 the network fluctuate. Control plane approach should take it into

 considerations.

 More thorough security analysis to be provided in future revisions.

8. IANA Considerations

 This document does not make any request to IANA.

9. References

9.1. Informative References

 [I-D.liu-dyncast-ps-usecases]

 Liu, P., Willis, P., and D. Trossen, "Dynamic-Anycast

 (Dyncast) Use Cases and Problem statement", draft-li-

 dyncast-ps-usecases-01 (work in progress), February 2021.

 [RFC4760] Bates, T., Chandra, R., Katz, D., and Y. Rekhter,

 "Multiprotocol Extensions for BGP-4", RFC 4760,

 DOI 10.17487/RFC4760, January 2007,

 <https://www.rfc-editor.org/info/rfc4760>.

Acknowledgements

 TBD

Authors' Addresses

 Yizhou Li

 Huawei Technologies

 Email: liyizhou@huawei.com

Li, et al. Expires August 19, 2021 [Page 14]

Internet-Draft Dyncast Architecture February 2021

 Luigi Iannone

 Huawei Technologies

 Email: Luigi.iannone@huawei.com

 Dirk Trossen

 Huawei Technologies

 Email: dirk.trossen@huawei.com

 Peng Liu

 China Mobile

 Email: liupengyjy@chinamobile.com

Li, et al. Expires August 19, 2021 [Page 15]

�Do you mean « service function instances »?

�This is more like a service function chain. No?

�No. It is not a chaining. Will change to “multiple functionally equivalent service instance”. We try not to use service function to avoid the ambiguous linkage to function chaining.

�So, this is not dispatched in many nodes as suggested in the intro?

�It was to refer to an abstract “endpoint of functionality”rather than a physical endpoint. So how about “conceptual endpoint” ?

�This is a service function instance, then. No?

�See the 1st comment on why we tried not to use sf. One thing to clarify : service instances for a service are functionally equivalent, not chained. Each instance is able to provide the service individually.

�To where ?

Add “�to D-Router”

�Should be better differentiated from a D-Router.

�How about “An optional element forwards packets towards a service instance packets based on D-Router’s decision and ensures the instance affinity. Unlike D-Router, it does not receive any metric or make any decision on its own. ”

�I would avoid this acronym as it may be confused with Segment Identifier (SID) used in Segment Routing

�Running out of the names… Would like hear more suggestions on naming before making any change. So we put prefix “D-”for the time being.

�Is this is a name to reach a service or any ID to uniquely identify a service instance (e.g., 12254) where the semantic of the ID is local to the service provider?

�Most likely it is an anycast IP address. Clients always use it to access a service without worrying about which specific instance handling it and where the instance located. Also it avoids the real instance information like IP exposed to the client.

�What is a D-Node?

�Should be “dyncast binding ID ”

�This means D-SID is explicated in the demand?

�Yes. The demand is sent from the client and it uses the D-SID as the destination address.

�Do you mean « forwarded »

�Yup, « forwarded » sounds a better word to me as there could be different ways in data plane to forward, either by explcit addressing or by implictly directing.

�The identification is local. I guess this is an opaque value. Do you require any internal structure for this ID?

�D-SID is global and never changes for a service.

�This can be disseminated by the service instances or be retrieved on-demand by the D-MA using some “means” to be defined. Right?

Do you have in mind solutions such as � HYPERLINK "https://tools.ietf.org/html/draft-chunduri-ospf-operator-defined-tlvs-02" �https://tools.ietf.org/html/draft-chunduri-ospf-operator-defined-tlvs-02�?

�(Different) Routing related info exchange would be addressed later. I think it would be useful when sticking together with the instance affinity and metrics definition consideration. Using OSPFv2 Extended Prefix Opaque LSA is another ospf mechanism being brought up. Can decide the bit and byte later (

�That is ?

�This is architecture draft so we would not specify what exactly the protocol is.

�Please explicit what is meant here.

�That is as a function of the distribution criteria that are local to the service. Right?

�Yes, it is a local decision based on all the metrics collected at the D-Router.

�D-Router are service elements. The use of “router” may not be convenient here.

These nodes are more like Session Border Elements (SBEs) (and may be Data Border Elements (DBEs) as well)

�This figure is mixing organic nodes vs. functions.

�D-something intended to be functional entity. What nodes do you think confused ?

�I would position D-Router as an overlay service node. This is more clean from an architectural standpoint.

�I am a bit confused about overlay node here. For example, D-Router can be a PE node in VPN context. Do you see it as an overlay node ?

�Why Clients have to be aware of this?

SID are IMO opaque value that is internal to the service. Of course, the information can be “leaked” during service resolution or service attachment, but the client does not need to perform specific behavior for that SID. No?

�D-SID is a publically available unique service ID . The client needs to know this information in order to start the demand. But how client knows about it is out of scope. It could be as simple as embedding a static one to client in advance.

�Indeed.

For such case, I guess a service instance in Figure 2 can’t be a DNS service instance.

�Good point. At the same time, I did not see every and each single service deployed in dyncast way. Dyncast would be used for a limited number of computing extensive edge service first in my mind.

�You may refer to the metrics mentioned in the figure.

�Sure.

�You may remind that this functionality is supported by load balancers to make sure that the same instance is used for the same flow.

�Problem statement draft has some discussions on the application server/message broker’s solution which has some efficiency and complexity concerns, especally when number of edge sites is large and they scatter geographycally.

�Unavailable, in general.

�I guess this a form of deregistering a service instance.

�It tried to cover both reg and dereg, add and delete, I think.

�Which is a service overlay. This is worth to be reflected in the architecture.

�Will clarify somewhere in revision.

�In order to avoid the dependency on the underlay network, it is better to cover this as part of the server overlay. Dedicated tools can be enabled between D-Routers without requiring a change to the underlay network.

�For QUIC, we may rely upon the destination Connection Identifier (that can be coordinated among several service instances).

