A Data-Oriented (and Beyond) Network Architecture

Paper ID 177 (14 pages)

Abstract

The Internet has evolved greatly from its original incarna-
tion. For instance, the vast majority of current Internet usage
is data retrieval and service access, whereas the architec-
ture was designed around host-to-host applications such as
telnet and ftp. Moreover, the original Internet was a purely
transparent carrier of packets, but now the various network
stakeholders use middleboxes to improve security and accel-
erate applications. To adapt to these changes, we propose
the Data-Oriented Network Architecture (DONA), which in-
volves a clean-slate redesign of Internet naming and name
resolution.

1 Introduction

The DNS name resolution system is a fundamental part of
today’s Internet, underlying almost all Internet usage. How-
ever, the DNS was developed rather late in the Internet’s
evolution, after many basic pieces of the architecture were
in place. For instance, TCP sessions were already bound
to IP addresses and the Berkeley Socket API referred to ad-
dresses, not names; frozen design decisions, such as these,
limited the extent to which DNS names (or any other nam-
ing system) could permeate the architecture. As a result, the
current role of naming in the architecture is more an accident
of history than the result of principled architectural design.
In this proposal, we take a “clean-slate” look at naming and
name resolution.

The test of any architecture is whether it gracefully ac-
commodates a wide spectrum of potential uses (and can with-
stand potential abuses), both those we encounter in the present
and those we anticipate for the future. However, to motivate
our design, we first focus more narrowly on one particular
issue; the shift in usage from host-centric to data-centric ap-
plications.

The first Internet applications, such as file transfer and re-
mote login, focused strictly on host-to-host communication:
The user explicitly directed the source to communicate with
another host, and the network’s only role was to carry pack-
ets to the destination address in the packet header. The In-
ternet architecture was built around this host-to-host model
and, as a result, the architecture is well-suited for communi-
cation between pairs of stationary hosts.

Today, however, the vast majority of Internet usage is data
retrieval and service access, where the user cares about con-
tent and is oblivious to location. That is, the user knows that
she wants headlines from CNN, or videos from YouTube, or
access to her bank account, but does not know or care on
which machine the desired data or service resides. The cur-
rent architecture can support this functionality, as is obvious

from its prevalence on the Internet, but it does not fit com-
fortably within the host-to-host model. For instance, con-
sider the following three user-relevant issues:

e Persistence: once given a name for some data or ser-
vice, the user would like that name to remain valid
as long as the underlying data or service is available.
There should be no equivalent of today’s “broken links”
when data is moved to another site. Today, HTTP redi-
rect and dynamic DNS are used to minimize this prob-
lem, but they are not sufficient answers. For instance,
neither works if the data changes administrative do-
mains, unless the operator of the previous domain pro-
vides perpetual support.

o Availability: data and services should have high avail-
ability, in terms of both reliability and low-latency. Avail-
ability is usually provided by replication at endpoints,
and the network’s role is to allow user requests to find
nearby copies. The first large-scale solution to this was
deployed by Akamai, using intelligent DNS servers
and URL rewriting. More recently, P2P mechanisms
like BitTorrent have become prevalent. While the suc-
cess of these mechanisms is undeniable, it is not at all
clear that such a fundamental requirement, availability,
should rely on a set of ad hoc and application-specific
mechanisms.

e Authenticity: users would like to know that the data
came from the appropriate source, rather than from
some spoofing adversary. Today this requires a PKI
to provide users with the public key of the provider.
Moreover, authenticity today is typically achieved by
securing the channel to the source, rather than explic-
itly authenticating the data.

Thus, several of the most natural features one would want
for service access and data retrieval — persistence, availabil-
ity, and authentication — are made unnecessarily hard by
the current host-to-host model of the Internet, often requir-
ing awkward or expensive work-arounds. Given this discor-
dance between historical design (host-oriented) and current
usage (data-oriented), we ask: what would the architecture
look like if we built it around service and data access?

Somewhat surprisingly, our research suggests that most
of the necessary changes reside in how Internet names are
structured and resolved. We propose replacing DNS names
with flat, self-certifying names, and replacing DNS name
resolution with a name-based anycast primitive that lives
above the IP layer. We call the resulting design the Data-
Oriented Network Architecture (DONA).

DONA improves data retrieval and service access by pro-
viding stronger and more architecturally coherent support
for persistence, availability, and authentication. It can also
be extended to provide support for caching and RSS-like up-
dates. However, DONA’s impact is not limited to data and
service access; we use these applications as motivating ex-
amples because they force us to think differently about some
fundamental issues, but most of these issues are not particu-
lar to data/service access. As a result, as we describe below,
DONA'’s overall design has architectural implications that
range far beyond data/service access.

DONA'’s name-based anycast primitive is useful for many
kinds of resource discovery; for instance, it can provide the
basic primitives underlying SIP, support host mobility and
multihoming, and establish forwarding state for interdomain
multicast. Placing anycast at the naming layer, rather than at
the IP layer, allows us to design for functionality rather than
be limited by concerns about scalability, since the mecha-
nisms need not operate at link speed.

There is another issue where historical design is at odds
with current usage. The original Internet architecture, fol-
lowing the end-to-end principle, intended the network to be
a purely transparent carrier of packets. Today, however, the
various network stakeholders (such as enterprises) use mid-
dleboxes to improve security (e.g., firewalls, proxies) and
accelerate applications (e.g., caches) [3]. Because DONA’s
anycast name resolution process follows essentially the same
administrative path as the ensuing data packets (we will ad-
dress the subtleties in this statement later), DONA can treat
the stakeholders along the path as relevant Internet actors.
This allows DONA to provide clean support for network-
imposed middleboxes. This isn’t a repudiation of the end-
to-end principle, in that functionality is still provided at the
ends; it is merely a recognition that operators should have, at
their disposal, architecturally coherent mechanisms to con-
trol how and what traffic traverses their network.

More recently, there has been much hand-wringing about
the scalability of routing in the current addressing paradigm
[24]. DONA’s anycast primitive provides a discovery mech-
anism that lives above the IP layer; as we will later describe,
this enables the use of path-labels rather than global ad-
dresses, an approach that results in tiny interdomain routing
tables.

At a more speculative level, DONA represents a partial
shift away from sender-based primitives to a more receiver-
based approach. One of our future research tasks is to ex-
plore how far we can go in this direction, and what this might
mean for a future Internet.

These architectural implications encouraged us that DONA
is not merely restricted to data and service access (which,
by itself, is significant as it is by far the dominant usage
on the current Internet), but rather facilitates improvements
along many dimensions. However, there are many other is-
sues, not discussed here, that demand attention: the Internet
still needs better security (particularly against DoS and ma-

licious/misconfigured routers), better manageability, better
usability, and many other properties. We aren’t proposing
DONA as a solution to these problems; in fact, we think
DONA is largely orthogonal to them. We hope to eventually
incorporate work on these problems within a larger frame-
work that also includes DONA.

The next section presents DONA'’s basic design and Sec-
tion 3 describes how this design supports such tasks as server
selection, mobility, multihoming, session initiation, and in-
terdomain multicast state establishment. Section 4 discusses
how DONA'’s infrastructure could be extended to support
more advanced functionality, such as content delivery, delay-
tolerant networking, and a variety of administrative access
policies (including middlebox insertion).

Section 5 discusses our prototype implementation and Sec-
tion 6 addresses the crucial question of DONA'’s feasibility.
The name-based anycast primitive will require routing on a
very large namespace, but it need only be done at name res-
olution speeds, not line speeds; we present various estimates
indicating that DONA is within reach of today’s technology.

We delay our discussion of related work until Section 7,
in order to have enough context to make the necessary con-
nections. For now, we merely note that almost every aspect
of our design is (proudly) stolen from elsewhere, most no-
tably from TRIAD [17], HIP [25], and SFS [22]. It is the
synthesis of these various ideas into a coherent architecture
that we claim as our contribution.

The paper ends, in Section 8, with some speculations on
DONA'’s broader architectural implications. In particular,
we discuss the possibility of basing the interface offered to
applications on DONA’s name-based anycast primitive.

2 Basic Design

DONA involves a major redesign of Internet naming. In
this section we first motivate these changes and then present
DONA'’s naming structure and name resolution mechanism.
This is followed by a brief discussion of security and ad-
dressing issues. For lack of space, many details are omitted.

2.1 Motivation

We start with the problem of service and data access and
ask how we might easily achieve persistence, availability,
and authentication, basic tasks which today are (sometimes
badly) handled by external ad hoc mechanisms. In DONA,
we propose a strict separation of concerns between naming
and name resolution in handling these tasks: names handle
persistence and authenticity, while name resolution handles
availability.

To provide persistence and authenticity, we use flat, self-
certifying names [22,25]. This form of naming is, by now,
a standard technique. As we review shortly in Section 2.2,
such names will remain invariant and enable easy authenti-
cation. The use of flat names makes informal identification
harder (since you can’t remember your friend’s 128-bit iden-
tifier), but it makes formal authentication easier.

High availability means that when a user requests data by
name, she receives the data quickly and reliably. To provide
availability, the name resolution process should (a) guide re-
quests to nearby copies of the data, and (b) avoid failed or
overloaded servers. The question, then, is how to build such
a name resolution process.

There are two main resolution paradigms in the literature.
The first is what we use today: lookup-by-name in a dis-
tributed database, which returns the location (IP address) of
a nearby copy. This database must maintain locations of all
the copies, identify the location of the requester, and then
find a reasonably good match between the two. Akamai has
pioneered the development of techniques to accomplish this,
but it clearly requires significant mechanism to achieve.

The other possibility, most notably used in TRIAD [17],
is to route-by-name to the closest copy. Routing protocols
are designed to find shortest paths and route around failures,
exactly the two tasks (a) and (b) we’ve assigned to name res-
olution. This led us to conclude that route-by-name, rather
than look-up, was the most natural approach. We discuss our
design for this in Section 2.3.

We note that there is one other issue — in addition to per-
sistence, authenticity, and availability — that the user cares
about, trustworthiness: users would like to know whether
they are getting their information from a reliable source. We
believe that this, like several other issues we discuss below,
is best handled by mechanisms that are external to the ar-
chitecture. Trust is so idiosyncratic and subjective that we
don’t believe any network architecture should mandate the
mechanisms by which trust is established. Moreover, by re-
maining outside of the core architectural structures, external
trust mechanisms can evolve along with changes in society
and institutions in a way that a fixed architecture can’t. To-
day, a variety of external mechanisms, ranging from Google
to personal recommendations, are used to establish trust. We
expect that new trust mechanisms, such as reputation sys-
tems and enhanced “webs-of-trust”, will be developed in the
future, but they will (and should) lie outside the confines of
the architecture.

2.2 Naming

DONA names are organized around principals. Each prin-
cipal is associated with public-private key pairs, and each
datum or service or any other named entity (host, domain,
etc.) is associated with a principal. Names are of the form
P:L where P is the cryptographic hash of the principal’s pub-
lic key and L is a label chosen by the principal, who ensures
that these names are unique. The granularity of naming is
left up to principals; a principal might choose to just name
her web site, or name her web site and each page within it, or
name at a finer granularity (such as naming each individual
photo or publication).

Principals are considered to own their data, in the sense
that only hosts authorized by the principal P can offer to
serve (i.e., provide access to) entities with names of the form

P:L. Each datum comes with metadata including the prin-
cipal’s public key and the principal’s signature of the data;
thus, when we speak of a client retrieving data we mean it
has received the triplet <data, public key, signature> (along
with perhaps other metadata).! In such a scheme, requesting
clients rely on the principal’s signature to ensure the data’s
integrity.

These names are application-independent and globally unique

(and can refer to anything, not just data or services). They
are also self-certifying in the following sense [22,25]: When
a client asks for a piece of data with name P:L and receives
the triplet <data, public key, signature>, it can immediately
verify that the data did indeed come from the principal by
checking that the public key hashes to P, and that this key
also generated the signature. This satisfies the need for au-
thentication; persistence follows from the fact that the names
don’t refer to location, and thus the data can be hosted any-
where.

With a slight alteration, these basic ideas can be naturally
applied to immutable data: here, the label L is the crypto-
graphic hash of the contents of the data and the principal P
is the purveyor of the data, not the owner; for instance, the
purveyor could be the hosting CDN. Since the client need
not rely on a principal to ensure the integrity of the data
(the hash over the contents ensures this), the only role of the
principal is to ensure data delivery. Since different CDNs
may have different degrees of reliability or coverage, clients
seeking immutable data might specifically request it from a
particular purveyor.

Note that there is a difference between the administrative
structure of the hosting machines, and the nature of the prin-
cipal. A person’s web page would be associated with their
own public key. The web page might initially be hosted at
their university or company or paid hosting service, but this
is not reflected in the name; instead, the owner (as we discuss
below) would authorize (with some reasonable TTL) this en-
tity to host their web page (and this authorization could be
applied to only a specific datum, or to a portion of the princi-
pal’s data, or to all the principal’s data). If the person decided
to move the page (for instance, if they changed employers),
then they would authorize a new entity to host their page
(and let the old authorization expire). The name of the data
would not change, even though the entity hosting the data
(or service) did change.

The biggest challenge to making such flat names work is
making sure they resolve to the appropriate locations, which
is what we discuss below. But there are usage questions that
must also be addressed (though we are not the first to pro-
pose names of this form, and several of these issues have
been discussed elsewhere, such as in [34]).

For instance, one usage question is: how will users learn
these flat, long, and user-unfriendly names? We expect that

!The signature might be signed with a different key, but accompa-
nied by a certificate from the principal’s key authorizing that other
key.

users will learn these flat names through a variety of external
mechanisms that the user trusts (to varying degrees), such as
search engines, private communication, recommender ser-
vices, and the like. Users won’t, of course, remember the flat
names directly, but will have their own private namespace of
human-readable names, which map onto these global and flat
names (as in [12]). While such flat names are harder to use
than today’s DNS names, they offer the advantage that the
mappings between private human-readable names and flat
names will be free to reflect evolving social structures rather
than being tied, as DNS names are, to a fixed administrative
structure.

Also, DONA does not provide a reverse-lookup mecha-
nism for names, like DNS, where one can map an IP ad-
dress to a name. The basic use of reverse-lookup is to tie a
user-unreadable label (in this case an IP address) to an user-
meaningful identity (in this case, a DNS name). We think
the analogous service in DONA would allow a user to map a
principal’s key (which is human-unreadable) to a trust-chain
between the principal’s key and his own that would help the
user understand the identity of the principal. We are in the
process of developing such a system.

2.3 Name Resolution

We now turn from discussing the nature of DONA’s names
to presenting how DONA translates these names into loca-
tions. Our goal in this design is to achieve high availability,
by finding close-by copies and avoiding failures.

As discussed earlier, DONA uses the route-by-name paradigm

for name resolution. Rather than use DNS servers, DONA
will rely on a new class of network entities called resolution
handlers (RHs). Name resolution is accomplished through
the use of two basic primitives: FIND(P:L) and REGIS-
TER(P:L). A client issues a FIND(P:L) packet to locate the

object named P:L, and RHs route this request towards a nearby

copy. REGISTER messages set up the state necessary for the
RHs to route effectively.

Each domain or administrative entity will have one log-
ical RH (but perhaps many physical incarnations); we will
denote the RH associated with an administrative entity X by
RHx. RHx is the provider/customer/peer (or, alternatively,
parent/child/peer) of RHy if X is the provider/customer/peer
of Y in terms of AS-level relationships. This RH structure
can extend to finer granularity than ASes to reflect other or-
ganizational and social structures; for instance, there could
be departmental RHs at universities and firms and, going
even further, users could have their own local RHs which
peer with those of their neighbors and friends. RHs use local
policy (consistent with their domain’s peering agreements)
when processing REGISTERs and FINDs.

Each client knows the location of its local RH through
some local configuration (much like they know about their
local DNS server). Any machine authorized to serve a da-
tum or service with name P:L sends a REGISTER(P:L) com-
mand to its local RH. Registrations can also take the form

[_Glient]

Figure 1: Registration state (solid arrows) in RHs after
copies have registered themselves. RHs route client is-
sued FIND (dashed arrow) to a nearby copy.

REGISTER(P:*) if the host is serving all data associated the
principal (or will forward incoming FIND packets to a local
copy).

Each RH maintains a registration table that maps a name
to both a next-hop RH and the distance to the copy (in terms
of the number of RH hops, or some other metric). There is
a separate entry for P:*, in addition to individual entries for
the various P:L. RHs use longest-prefix matching; if a FIND
for P:L arrives and there is an entry for P:* but not P:L, the
RH uses the entry for P:*; when entries for both P:* and P:L
exist, the RH uses the one for P:L. Only when the RH has
neither P:* or P:L entries do we say that P:LL does not have
an entry in the registration table.

When a FIND(P:L) arrives, the forwarding rule is straight-
forward: if there is an entry in the registration table, the
FIND is sent to the next-hop RH (and if there is more than
one, the choice is based on the local policy and which en-
try is closest); otherwise, the RH forwards the FIND to-
wards its parent (i.e., its provider) using its local policy to
choose among them if the RH is multi-homed. Thus, reg-
istration table misses are forwarded up the AS hierarchy in
the hope of finding an entry (see Figure 1). In the case of
immutable data, a FIND command can take the normal form
FIND(P:L), or the special form FIND(*:L) which indicates
that the client is willing to receive the (self-certified) data
from any purveyor.

If RHx receives a REGISTER from a child (i.e., cus-
tomer), it does not forward it onward unless no such record
exists or the new REGISTER comes from a copy closer than
the previous copy. If so, RHx forwards the REGISTER to
its parents and peers (after updating its registration table).
If the REGISTER comes from a peer, the entry can be for-
warded or not based on local policy (depending, for exam-
ple, on whether the AS is willing to serve as a transit AS for
content). By letting the forwarding of FINDs and REGIS-
TERs be driven by the local policies, DONA can faithfully
respect the basic interdomain policies as reflected in BGP. In
addition, the forwarding of a REGISTER can be terminated
at any point if dictated by some administrative policy (such
as a corporate firewall).

REGISTER commands must be authenticated. The local
RH issues a challenge with a nonce, which the client must

register : the received REGISTER message, if any.

regs :all REGISTER messages for the name (P:L).

pref_reg: preferred REGISTER to disseminate to
peers/parents, if any.

name : the name (P:L) event concerns.

regs «—load (name);
if register received then
if duplicate or invalid signature then
return;
end
set_timer_for_expiration (register);
else
// A REGISTER expired...
end
foreach out in provider and peer links do
pref_reg «decision_process (outregs);
if pref_reg changed for out then
msg <« new_message (pref_reg) ;
add_intra_cost (outmsg);
sign_message (private_key,msg) ;
queue (out,msg) ;
end
end
store (name, all changes) ;

o 0N NN AR W N

e L <
e 0 N NN R W N =D

Figure 2: Pseudo code for processing received and
expired REGISTERs.

sign with P’s private key, or sign with some other key and
provide a certificate from P empowering this other key to
register this piece of data. When forwarding REGISTERS,
the RH signs it so that the receiving RHs know that the
data came from a trusted RH. These signatures are hop-by-
hop and accumulated in a REGISTER along the path. In a
similar manner, the RHs accumulate the distances; they ap-
pend their distance/cost to the sending RH before sending
the REGISTER to next RH. REGISTER commands have a
TTL and must be refreshed periodically. DONA also pro-
vides an UNREGISTER command so that clients can indi-
cate that they are no longer serving some datum. Figure 2
shows the pseudo code for processing received and expired
REGISTERSs.

The FIND packet does not just resolve the name, it ini-
tiates the transport exchange. The FIND packet takes the
form as shown in Figure 3; The DONA-related content is
essentially inserted as a shim layer between the IP and trans-
port headers. The name-based routing provided by DONA
ensures that the packet reaches an appropriate destination.
If the FIND request reaches a Tier-1 AS and doesn’t find
a record associated with that principal, then the Tier-1 RH
returns an error message to the source of the FIND. If the
FIND does locate a record, the responding server returns a
standard transport-level response (the same as if the trans-
port header had been received on a normal data packet, not

IP header

Type

| Next header type |

Name (P:L, 40 bytes)

Transport protocol header

Figure 3: Protocol headers of a FIND packet. Type is to
separate FINDs from their responses.

on a FIND packet). To make this work, transport protocols
should bind to names, not addresses, but otherwise do not
need to change. Similarly, application protocols need only
be modified to use names, not addresses, when calling trans-
port. In fact, many applications could be simplified when
implemented on top of DONA. Using HTTP as an example,
we note that the only essential information in an HTTP initi-
ation is the URL and header information (such as language,
etc.); the URL is not needed, given the data is already named
in a lower layer, and if each variation of the data (such as lan-
guage) is given a separate name then the header information
is also superfluous.

The packet exchanges that occur after a FIND has been
received are not handled by RHs (except, as we note in Sec-
tion 4, when they serve as caches or other middleboxes), but
instead are routed to the appropriate destination using stan-
dard IP routing and forwarding. To this extent, DONA does
not require modifications of the IP infrastructure.

2.4 Security Issues

There are a variety of security issues that must be addressed,
some by DONA itself and some by underlying or external
mechanisms.

For bandwidth denial-of-service attacks, we assume that
there are IP-level mechanisms that can restrain unwanted
packet streams that are overwhelming an RH, server, or client.
For resource exhaustion attacks against RHs, DONA relies
on contractual limits providers place on customers for the
number of FINDs and REGISTERS they can submit per time
period. RHs may additionally impose other rate-limiting
techniques such as cryptographic puzzles.

We assume that as part of establishing customer/provider/
peering relationships, peering RHs have securely exchanged
their public keys, so RHs can always ensure that they are
receiving packets from the appropriate RH. However, a ma-
licious RH can still cause damage. For instance, a malicious
RH can refuse to forward REGISTERs and FINDs; this is
a failure of the AS, in much the same way an AS could
fail to forward packets, and presumably commercial pres-
sures would reduce this form of misbehavior. More sub-
tly, a malicious RH could forward REGISTERs overheard
from other RHs. To minimize this risk, when RHs forward
a REGISTER they include the next-hop’s public key (or its
cryptographic hash). In addition, REGISTERs have finite
lifetimes.

The worst a malicious RH can do is deny a client service
(since cryptographic measures allow the client to authenti-

cate the data). In Section 3 we discuss ways in which clients
can request access to other copies (i.e., not just the closest
one); this will allow a client to avoid misbehaving RHs, un-
less the misbehaving RH lies on the path to all copies of that
particular item.

In all cases, though, RHs are commercially related to the
clients they are serving; they are either paid (perhaps recur-
sively) by the client or by the server. Thus, DONA is not
relying on the cooperation of arbitrary entities, but is rely-
ing on the nature of a commercially provided service. Thus,
while the design should be reasonably secure against mis-
configured or subverted RHs, we anticipate that any such
problems would be detected and corrected by the provider.

In such a key-centric design, the greatest fear is key com-
promise. There is no remedy except for providing effective
means for key revocation. DONA does not, itself, provide a
key revocation mechanism. However, there are a variety of
mechanisms one could use for this, such as third-parties (i.e.,
Google) providing databases of revocation lists. Each revo-
cation is cryptographically proven, so they cannot be faked;
thus the database need merely provide access to the data, not
vouch for its correctness.

DONA itself provides a useful substrate for revocation
lists and online key status query protocols. That is, key revo-
cations related to a principal P (both of P’s private key, and
of any secondary keys P has used) could be stored under P:L
for some special reserved name L, and if an RH finds any
entry corresponding to that name it immediately returns no-
tification of a key compromise.? Thus, if a client wanted to
check a key related to P it could issue a FIND(P:L) for this
special value of L. As we describe in Section 4, DONA also
supports update functionality, so a client could subscribe to
be notified of any such revocation.

Finally, principals and replicas may ensure that their key
is not already in use by doing a FIND(P:*) on a freshly gen-
erated key P (using DONA’s name resolution) to see if the
key is already in use.

2.5 Internet Addressing

The DONA design, as just described, could function over the
current IP layer, with its present form of addressing and rout-
ing. However, many think the current Internet addressing
scheme is facing a looming crisis, as the increasing demand
for multihoming threatens to explode routing tables [24].
Even aside from this speculative threat, the current address-
ing paradigm requires a delicate balance between scalability
(e.g., aggregation) and flexibility (e.g., multihoming, policy
routing) that isn’t always easy to achieve.

DONA’s name-based anycast primitive can remove much
of the pressure on the lower-level addressing structure by
providing a separate mechanism for path discovery. In par-
ticular, DONA could enable IP to use path-labels (as in [19])

“Note that once any key revocation entry has been registered for
that principal, there is nothing the key compromiser can do to cause
its removal from the registration tables.

rather than globally routable addresses. In what follows,
we refer to the client as the source of the FIND and the
server as the node that responds to the FIND (presumably
a node that generated the REGISTER, or a caching RH as
discussed later in Section 4). Moreover, each host has a
domain-specific address; that is, for each domain within which
it is homed, that domain associates an address to that host,
and that address has no meaning outside of that domain.

In this approach, when a client sends a FIND, its source
address is originally just its domain-specific address. As the
FIND is forwarded from client to server, next-hop domain
path instructions are appended to this source address. Each
such instruction has purely local meaning; for instance, as
the FIND passes from domain A to domain B, an annotation
is added to the path instruction that tells A that the next-hop
domain and, vice-versa, tells B that, in the reverse direction,
the next hop is A. This instruction need only be understood
by the two connected domains A and B. When the FIND
arrives at the server, the server appends its domain-specific
address to the path description. It can then reverse these
path instructions and use them for its response to the client
(since reversing the order just gives the path in the opposite
direction). Similarly, when the server’s packets arrive at the
client, the client can reverse the path in order to send packets
to the server.

Because these per-hop path instructions only need to dis-
tinguish between the various next-hop domains, they can be
quite short (say, on the order of a few bytes), so the total path
instruction would be quite short. More importantly, the inter-
domain routing tables would be extremely small (and quite
static); merely enough to translate these per-hop instructions
into a next-hop AS. Note that these path-instructions would
not have global meaning, since if a source in a different do-
main used this path, the domain-specific next-hop instruc-
tions would not necessarily lead to the desired destination.
Thus, in this design, there would no globally meaningful ad-
dresses and the DONA FIND/REGISTER primitives would
be required to establish end-to-end connectivity.

This approach would require the endpoints to detect AS-
level path failures and to resend a FIND in that case. This is
a substantial extra burden on connections, but it is the trade-
off for doing path-discovery above the IP layer. Also, while
this design might superficially resemble other connection-
oriented designs, with the FIND playing the role of a con-
nection-establishment, there is no per-flow state in the net-
work.

This approach would produce symmetri