
Optimizing Mobile Application Communication for
Challenged Network Environments

Waylon Brunette1, Morgan Vigil2, Fahad Pervaiz1, Shahar Levari1, Gaetano Borriello1, and
Richard Anderson1

1 Department of Computer Science and Engineering, University of Washington, Seattle, WA,

{wrb,fahadp,levaris,gaetano,anderson}@cse.uw.edu
2 Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA,

mvigil@cs.ucsb.edu

ABSTRACT
Designing mobile applications for challenged network environments
necessitates new abstractions that target deployment architects, non-
developers who are charged with adapting an ensemble of off-the-
shelf software to a deployment context. Data transfer is integral
to mobile application design and deployments have inherent and
contextual requirements that determine what data should be trans-
ferred and when. In this paper, we investigate building mobile ap-
plications in challenged network environments by focusing on ab-
stractions to support disconnected environments and areas of sparse
heterogeneous connectivity. We explore and characterize various
methods of transmitting data using: existing synchronization tools,
peer-to-peer communication, and sparse networks. We also intro-
duce a new software tool called ODK Submit to help streamline
application customization to challenged network environments.

Keywords
mobile devices; Open Data Kit; application framework; multiple-
channel communication; peer-to-peer networking; multi-network

1. INTRODUCTION
Network connectivity is a persistent concern for organizations

working in resource-constrained contexts because 1) connectivity is
not always present, 2) the type of connectivity often varies by loca-
tion, 3) data transmission costs may be too high for limited budgets,
and 4) administrative protocols restrict how data can be transmit-
ted and stored. These constraints can inhibit a mobile application’s
capabilities, implying that deploying organizations need to adapt
their application to factor in connectivity and other contextual lim-
itations. Various ICTD research projects have focused on improv-
ing connectivity by extending communication infrastructures (e.g.,
long distance WiFi, village base station, mesh networks). However,
customizable software frameworks could help improve mobile ap-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ACM DEV 2015, December 1–2, 2015, London, United Kingdom.
c© 2015 ACM. ISBN 978-1-4503-3490-7/15/12 ...$15.00.

DOI: http://dx.doi.org/10.1145/2830629.2830644.

plications’ capabilities in challenged network environments until
universal connectivity is available and affordable everywhere.

Mobile devices often have several built-in transmission capabil-
ities (e.g., GSM, WiFi, peer-to-peer) but lack a flexible framework
to systematically adjust to changing network conditions based on
an application’s deployment requirements instead of simple con-
nectivity available recognition. Data transfer is integral to an ap-
plication’s usage and context making it difficult to create a uni-
versal solution to address diverse requirements. This paper argues
for creating a software tool that selects appropriate data for trans-
mission over available network channels and can be customized by
deployment architects. Deployment architects are generally non-
programmers who adapt an ensemble of off-the-shelf software to a
deployment context. Providing flexible transmission management
to deployment architects could improve the feasibility of deploying
mobile information systems in challenged network environments
by enabling application-level communication optimizations.

Challenges for deploying applications in developing regions have
been documented [10] and include: low literacy, limited technical
personnel, use of inexpensive multipurpose devices, and context-
specific customization. Research initiatives that address some of
these challenges have focused on interface design [16, 28] and rapid
customizability [19] to produce frameworks such as Open Data Kit
(ODK) [11, 19] and CommCare [17]. These frameworks focus
on lowering technical barriers to assist organizations in deploy-
ing information services in resource-challenged contexts and are
designed for disconnected operation. However, ODK leaves deci-
sions about when and how to transmit data to the end-user which
leads to possible inefficiencies with respect to transmission costs or
deadlines.

In this paper, we examine options to enable non-developers to
adapt their mobile application to various network conditions. To
motivate the need for a configurable data transmission tool that op-
erates in sparse connectivity, we discuss challenges with existing
paradigms, characterize the performance of popular data transfer
apps from different locations, and formalize sources of transmis-
sion meta-data into three perspectives. We then propose an (ODK)
extension called ODK Submit that uses an organization’s deploy-
ment parameters to guide communication decisions. Submit en-
ables application-level communication optimization of sparse het-
erogeneous networks by sending appropriate data over available
network infrastructure or peer-to-peer communications. We also
investigate and characterize Android peer-to-peer transfer methods
to better understand deployment trade-offs for different use cases.

167

2. CHALLENGES BUILDING MOBILE APPS
Building and deploying mobile data collection and decision sup-

port applications can be challenging, particularly because the task
of bridging the design-reality gap [20] is left to the non-programmer
deployment architect. In this section, we outline some of these
challenges and discuss assumptions that inhibit deployment cus-
tomization across diversely challenged networking environments.

2.1 Existing Paradigms
Challenges with deployments are often magnified in resource-

constrained environments because of insufficient design paradigms.
Uniform Data: Existing routing paradigms often assume that

inherent data properties are sufficient to determine the appropriate
network technology for data transmission [15, 24]. This assump-
tion overlooks the fact that data is not uniform but instead has two
distinctive qualities: inherent qualities and contextual qualities. In-
herent qualities of data, such as data types and sizes, are indepen-
dent of the application in use. In contrast, contextual data qualities
are necessarily dependent on use scenarios. Examples include data
priority, data importance, deadlines, and precedence. Contextual
qualities such as an organization’s data policy and local laws can
also affect how data is stored and transmitted (e.g., private medical
records vs public data).

Single-Task Mobile Apps: Resource-constrained environments
often lack enough technical personnel to build and customize infor-
mation systems. This leads organizations to use productivity soft-
ware (e.g., MS Excel, MS Word) to create solutions that can be cus-
tomized by staff having little programming expertise. These tools
have been designed for conventional PCs that are poorly suited
to these limited infrastructure environments. Although mobile de-
vices are well-suited to scarce connectivity and sporadic grid power,
mobile software tools do not yet offer the same range of features as
customizable PC productivity tools. Instead, several small apps fo-
cused on single tasks are created leading to specialized apps with
minimal customizability. Mobile frameworks, such as ODK 2.0 [11],
are needed to help organizations customize and refine their apps to
their context while maintaining the single-task paradigm. Addi-
tionally, with single-task apps there is often limited coordination of
system resources making it challenging to conserve resources. For
example multiple apps could simultaneously attempt to communi-
cate when connectivity becomes available.

Similar Transmission Cost: Developers often choose a single
transport protocol such as TCP/IP or SMS because of systems ab-
stractions and availability of networks for the original deployment
location. However, the cost associated with connectivity can vary
across different regions creating feasibility issues for deploying ap-
plications in varying contexts. For example, a 500MB post-paid
mobile broadband subscription in Europe costs 1% of per capita
GNI. By contrast, the same subscription costs 38% of the average
per capita GNI across Africa [6]. Even as the cost of broadband
subscriptions falls globally, an entry-level broadband connection
continues to cost over 100% of per capita GNI in less developed
countries, as compared to only 1% of per capita GNI in more de-
veloped countries [3]. Even in developed regions, there are com-
munities yet to be covered. In the US, broadband coverage on Na-
tive American reservations is less than 10% per capita [5], despite
coverage of over 70% for the rest of the country. Although tech-
nologies with universal connectivity options like satellite uplinks
exist, financially constrained organizations cannot afford them. Re-
stricting data transmission to a single protocol can lead to missed
opportunities in optimizing transmission costs based on contextual
qualities of data.

2.2 Example Usage Scenarios
Based on our deployment experiences, we outline scenarios that

highlight networking challenges and the benefits of leveraging con-
textual data properties when making data transmission decisions.

Scenario 1 - Site Visits: The Government of Punjab’s Health
Department (Pakistan) used ODK to document the workload, staff
attendance, and available medical supplies at health clinics. To
identify shortages it dispatched inspectors to verify inventory and
photograph workers for attendance verification. This information
was transmitted to ODK servers; however, only the medical sup-
ply data was time-sensitive. The photographic verification of at-
tendance was a human resource concern and did not require urgent
delivery, yet the non-urgent piece of data dominated the transmis-
sion cost because the size of the photos are large.

Scenario 2 - Forest Monitoring: The Surui, an indigenous Ama-
zonian tribe, uses ODK to inventory their forests for selling carbon
credits in voluntary carbon markets to create a tribal income stream
and protect their environment. Workers hike or boat into remote
areas with little connectivity and spend days or weeks conducting
carbon inventories. Workers inventory a section of the forest to de-
termine the amount of carbon stored in the trees and upload this
data on their return. Data loss and/or corruption can be expensive
since expeditions are time-consuming. A simple solution to com-
bat data loss is to replicate data in the field across multiple devices.
When workers are in the field they also record signs of illegal log-
ging activity. In contrast to inventory data, reports of illegal activity
should be quickly transmitted to authorities via any available con-
nectivity (possibly expensive) to increase the likelihood of catching
the perpetrators.

Scenario 3 - Community Health: Community Healthcare Work-
ers (CHW) frequently travel to villages to provide basic care. Their
visits at households or low-end clinics provide an opportunity to
document patients, perform a quick analysis of whether a patient re-
quires referral for further attention, and educate people about best-
practices[16, 26]. For example, AMPATH’s home-based HIV/AIDS
counseling and testing program in Kenya used ODK to reach over
a million patients at home. However, CHWs’ duties can vary per
organization and country thus producing variation in data priority.
For example, supervisors may need to receive updates frequently
about which tasks have been completed (via SMS or cellular data)
but the transfer of patients’ medical data may be postponed until
a WiFi connection is available. Ministries of Health would likely
want an immediate notification on the detection of Ebola or Polio
to rapidly quarantine Ebola areas to contain an outbreak or quickly
deploy polio vaccination teams to surrounding communities.

2.3 Existing Synchronization Tools
Cloud-based data storage and synchronization systems often serve

as building blocks for application development. To better under-
stand the performance of existing tools, we evaluated the operation
of three popular cloud-based systems: Dropbox 1, OneDrive 2, and
Google Drive 3. We measured performance on Android devices us-
ing libraries provided by the cloud services since we are evaluating
developer options for creating mobile data applications. Since not
all contexts suffer from challenged networks, we chose three cities
(Lima, Peru; Kisumu, Kenya; & Lahore, Pakistan)in somewhat
resource-constrained countries. Large cities have better infrastruc-
ture than their rural counterparts demonstrating best-case scenarios
for countries with resource constraints. To provide context for the

1https://www.dropbox.com/home
2https://onedrive.live.com/
3https://www.google.com/drive/

168

Table 1: Network measurements from various locations
LOCATION RTT (ms) BANDWIDTH (Mbps) LOSS (%)
Lima 1173.0 1.05 0
Lahore 207.0 1.05 0
Chowchilla 154.6 1.69 0
Pala 63.0 6.93 0
Seattle 39.2 11.00 0

Figure 1: Dropbox file synchronization performance with vary-
ing file sizes using mobile data connection. (Log Scale)

performance divide between urban and rural areas, we also evalu-
ate the performance differences of an urban city in the U.S. (Seattle,
WA) and rural towns in the U.S. (Chowchilla and Pala, CA), which
have populations of ~600K, ~18K and ~1.5K respectively. Service
carriers used in the experiments include Claro (Lima), Telenor (La-
hore), T-Mobile (Seattle), Verizon (Chowchilla) and AT&T (Pala).
File synchronization was measured 15 times per service using 10KB,
500KB, 1MB, 2MB, and 10MB of image files and 1KB, 10KB,
100KB, and 1MB of text files.

Table 1 shows network statistics recorded using ping and iperf
tools. Cellular networks in Lima and Lahore tend to be highly latent
with low bandwidth capacity with Lima experiencing the longest
round trip times at 1,173 ms. Seattle was 5 and 30 times faster
than Lahore and Lima respectively. Mobile network connectivity
in rural US test sites was significantly lower as Chowchilla had
1.69 Mbps (154.6ms RTT) and Pala had 6.93 Mbps (63.02ms RTT)
compared to Seattle’s 11 Mbps (39.2ms RTT) high speed band-
width. We emphasize that network availability and performance in
Chowchilla and Pala represent a best case for rural connectivity in
the US, as measurements were taken from the more densely pop-
ulated town centers. We also note that poor network infrastructure
is not just a problem for developing countries, but for rural parts of
developed countries as well.

Results from the performance tests shown in Figure 1, 2 and 3,
reveal that Dropbox performs better with all tested file sizes. This is
unsurprising as the Dropbox API compresses all files prior to trans-
mission, while Google Drive and OneDrive do not. OneDrive only
performed differential synchronization of Microsoft Office files,
which excludes many large media files. Google Drive did not use
differential synchronization for any file, causing it to use the most
bandwidth per file update of the three evaluated options. When ac-
cessed via the developer API, Dropbox does not provide differential
synchronization, though it does perform data compression prior to
transmission. We also note that OneDrive experienced higher vari-
ability in file transfer times than Google Drive and Dropbox, with
a standard deviation of 5.2 seconds compared to 2.3 seconds for
Dropbox and 4.6 seconds for Google Drive. Even though Lahore,
Kisumu, and Lima have access to mobile Internet, the performance
of the connections were inconsistent and more prone to high latency

Figure 2: Google Drive file synchronization performance with
varying file sizes using mobile data connection. (Log Scale)

Figure 3: OneDrive file synchronization performance with
varying file sizes using mobile data connection. (Log Scale)

and limited bandwidth than connectivity in Seattle.
Our measurements demonstrate that common data synchroniza-

tion platforms experience issues in varying network environments
as they all experienced longer file transfer times and greater vari-
ability in transfer time in resource-constrained environments. Based
on our experiments, Dropbox would be the preferable ‘off-the-shelf’
solution, followed by Google Drive, then OneDrive. However,
there are still issues that these cloud synchronization platforms do
not address such as: 1) they lack support to enable organizations
to treat data differently based on contextual data qualities; and 2)
they are TCP/IP based and do not allow for alternative connectivity
options in challenged network environments.

3. PERSPECTIVES
Data is often transmitted using whatever protocol a software de-

veloper selected when developing the software. Dynamic selection
of available protocols based on a deployment’s context and user lo-
cation could improve connectivity in challenged network environ-
ments. To better facilitate dynamic selection the traditional con-
cept of the TCP/IP Application Layer [27] should be extended to
include: 1) metadata from the platform about connectivity; 2) data
properties from the software/application developer; and 3) contex-
tual constraints from an deployment architect. The deployment ar-
chitect is the domain expert who deploys the software in the field
and customizes it to meet the needs of their business or organiza-
tion. The deployment architect and the software developer both

169

Figure 4: Design space of communication solutions for utilization of heterogeneous networks
provide vital information that is necessary to understand an ap-
plication’s communication context and constraints. Our approach
of breaking the application layer into parts is similar to Martins
et al.’s approach to coordinating different perspectives on system
power[22]. We find their multi-perspective approach to optimiz-
ing battery life suitable to optimizing communication resources.
As Martins et al. point out: "the user needs to drive"; claim-
ing: "1) The OS cannot always know the resource priorities of
all applications; 2) applications cannot always know the function-
ality priorities of the end-user; and 3) users should choose the
right level, trading off functionality versus lifetime." Overall we
agree with these insights with the exception of focusing on the
end-user. Instead, there is often a deployment architect that han-
dles organization-wide restrictions and imposes constraints derived
from deployment considerations. The focus on a deployment ar-
chitect in addition to the end-user is an important distinction, as
grouping developer, deployment architects, and end-users into a
single concept can make system optimizations difficult. Figure 4
shows how Submit aims to combine information from the network
perspectives of the platform, software developer, and deployment
architect to efficiently manage communication resources to relieve
the end-user of communication management.

Platform Perspective - The platform perspective encompasses
the device and operating system perspectives on connectivity and
mobility. For instance an Android device can: detect the type
of available network connectivity, detect device mobility, estimate
available data capacity, and estimate the device’s geographical lo-
cation. Location and mobility information enable Submit to pos-
sibly infer the duration of a connection and apply regional data
policies. However, the platform is unaware of what policies, fi-
nancial restrictions, and other data priorities a user or organization
may want applied. There are numerous works related to a platform-
only communication management scheme as multiple communica-
tion channels can be dynamically allocated based on availability or
bonded to create compound channels with greater throughput ca-
pacity[14, 30]. While Submit dynamically schedules traffic based
on channel availability, it does so without modifying the underlying
platform to combine or bond channels.

Application Developer Perspective - The application devel-
oper perspective encompasses issues relating to the functionality of
a mobile application. A developer understands the inherent prop-
erties such as the type and typical size of data that can help Submit
develop an appropriate cost model. Unfortunately, a developer may
be biased towards a particular communication medium and may not
bother including functionality to support alternatives such as: local
off-line storage to support disconnected operation or transmission

of summary data over SMS. Thus, developers constrain communi-
cation resources via software design and protocol selection. Some
examples of developer limitations include apps that communicate
over 2G and 2.5G networks exclusively rather than 3G data net-
works[7, 29]. Likewise, a single protocol limits what an app can ef-
fectively communicate, for example, transmitting binary over SMS
is non-optimal. Furthermore, a developer likely does not fully un-
derstand how a future user may want to deploy the application in
varying context with limiting data policies and budgets.

Application Deployment Perspective - The deployment per-
spective encompasses issues relating to contextual deployment re-
quirements that should be incorporated by a deployment architect,
as the dynamic contextual information is not available when the
developer compiles the software. A deployment’s requirements
can provide important metadata including information prioritiza-
tion, and financial restrictions that may change during the lifetime
of the project. ODK tools are designed to be general-purpose and
have been deployed in a variety of settings including public health,
environmental conservation, and census applications. These do-
mains have different needs and real-time information may change
how data is transmitted. For example, in a health application, a
CHW may find a patient needing immediate referral to a care facil-
ity. This message is urgent and should be sent with a different prior-
ity than updating a healthy patient’s medical record. Usage context
is not predictable by the developer nor can the platform impose that
one particular channel be used as that channel may not be available.
Depending on the urgency of the data it may be necessary to send
the same data over multiple channels to ensure delivery or possi-
bly reach multiple destinations. Submit seeks to remove the user
burden of actively monitoring the status communication events.

Overlapping Perspectives - There are points where each of
these perspectives overlap and interact. The most commonly com-
bined perspectives are those of the platform and software applica-
tion. Opportunistic off-loading approaches combine the connec-
tivity awareness of the platform with software application protocol
decisions [9, 18, 21]. While this approach provides more guid-
ance than either platform or software developer perspectives alone,
it results in coarse-grained communication automation. In contrast,
web applications exemplify the absence of the platform perspective
[4, 1]. While there is value to platform-independent systems, plat-
form information about connectivity and location is necessary for
maintaining historical connectivity models. Submit’s design incor-
porates information from the different perspectives and attempts to
hone how and when information is transmitted in challenged net-
working environments.

170

4. ODK SUBMIT
To address challenges faced by deployment architects trying to

customize their deployments in challenged network contexts, we
introduce ODK Submit. Submit combines information from the
three perspectives to optimize data transmission in challenged net-
work environments by utilizing multiple heterogeneous networks
(e.g., cellular, Wi-Fi, peer-to-peer) based on contextual data proper-
ties and available connectivity. Urgent data can be transmitted over
more pervasive, higher cost networks, while less urgent data can be
transmitted opportunistically over less pervasive, lower-cost net-
works. ODK deployments are common in rural environments with
sometimes sparse connectivity. In a May/June 2015 online survey
of the ODK community by Cobb and Sudar et al. [13], 48 out of 56
respondents who deploy mobile devices for data collection reported
deployments in rural environments. Respondents from all environ-
ments reported that the total size of data collected varied consider-
ably with 19.6% collected gigabytes, 53.6% collected megabytes,
10.7% collected kilobytes of data, and 16.1% did not know. Trans-
mitting gigabytes over expensive connections could potentially be
cost prohibitive so understanding how important a piece of data is
crucial when deciding to transmit over expensive connections.

The data transmission method selected should be based on an
organization’s usage model and priorities, as a one size fits all so-
lution will not work for the variety of ICTD use cases. Examples
outlined in Section 2.2 have varying requirements from the deploy-
ment perspective. For example, forest workers do not have reliable
access to electricity, potentially for weeks, making battery life the
highest priority. Occasionally replicating data between devices in
the field can reduce the chance of data loss. Data importance and
other data properties set by a deployment architect should deter-
mine when and how much data to replicate to conserve battery life.
In contrast, CHWs have better access to power and experience vari-
ation in the frequency in which they come into range of inexpensive
connectivity (e.g., Wi-Fi at a clinic) and how often they meet other
CHWs in the field. As CHWs meet in remote areas, peer-to-peer
technologies could be used to transfer data so that a CHW with
more clinic visits could act as a Data MULE [25] and transport in-
formation with low priority, reducing the amount of data that needs
to be sent over costly cellular networks.

To facilitate diverse application requirements, Submit leverages
ODK 2.0’s XLSX format to specify parameters. ODK users already
utilize the XLSX format to specify names of input data fields, de-
fine the field’s data type, provide question text, flow logic, and other
information. We are exploring the use of a basic set of parameters
that deployment architects can input into the XLSX system in rel-
ative terms (1-10 scale), including data priority (how quickly the
data should be transmitted) and data importance (how important it
is that the data not get lost). Additionally, we are investigating the
provision of deadlines in terms of delta after the data was collected.
To minimize the burden on the deployment architect, all parameters
are kept optional and - if unspecified - automatically set to lowest
values, causing the system to optimize for low-cost routing. Since
network costs vary across geographies, Submit requires an organi-
zation to create a cost model by specifying a configuration file with
cost per byte or cost per message for each transmission medium.

Submit helps to simplify mobile app development by manag-
ing connections, providing a user interface (UI), and abstracting
various transmission protocol libraries. For long periods in dis-
connected environments Submit supports peer-to-peer data transfer
using Wi-Fi Direct, Bluetooth, both versions of NFC available on
Android, and QR Codes. Submit simplifies the process of lever-
aging Android’s peer-to-peer networking capabilities by notifying
users when to exchange data and includes abstractions that simplify

Figure 5: Submit’s peer-to-peer transmission screen showing
an example of NFC (left) and Bluetooth (right) transmission.

peer-to-peer connection setup. Deployment architects can prede-
termine parameters for peer-to-peer communication, such as which
transfer mode to use. If necessary, Submit presents an unified peer-
to-peer interface (shown in Figure 5) to the user prompting them
for missing information (e.g., select Bluetooth device to transmit).
Additionally, since many synchronization protocols are complex
and possibly proprietary, it would be difficult to create a generic
tool that conformed to all possible synchronization protocols. In-
stead, Submit functions as a module that enables developers to flex-
ibly integrate their app-specific protocols with Submit’s networking
logic. For example, Submit only requires an app to provide contex-
tual properties and metadata (e.g., type, size, priority) and allows a
mobile app to maintain ownership of transmission protocols. This
means the choice to use Submit does not preclude the use of an-
other sync protocol or encryption schemes as an app can leverage
Submit’s communication management for only a subset of its data.

4.1 System Design
Submit is an Android service that coordinates data communi-

cation by providing channel monitoring and transmission schedul-
ing mechanisms to Android apps. For the purposes of this section,
the term client app refers to any Android app that binds to Sub-
mit’s Android service. Submit provides software developers with
an interface that abstracts communication channels and flexibly
handles data ownership and application-specific synchronization
issues. Submit is designed to separate application logic from the
network routing logic with a communication system that provides
extensibility in terms of: 1) adding transmission channels; 2) modi-
fying transmission channel selection; and 3) handling complex data
ownership and application-specific synchronization issues. Sub-
mit’s service API exposes communication scheduling mechanisms
that client apps use to either 1) delegate responsibility of transmit-
ting data to Submit; or 2) register to receive notifications when ap-
propriate network channels are available. When using Submit for
notification purposes, a client app takes responsibility to transmit
its data with its own possibly proprietary or complex protocol.

Client apps specify two types of objects to interface with Submit:
1) the DataPropertiesObject and 2) the SendObject. The DataProp-
ertiesObject contains metadata that describe the data to be transmit-
ted. The properties supplied include: data size, data urgency, data
fragmentability, and reliability requirements. The inherent proper-
ties are derived from the perspective of the developer representing
"normal" sized data for the client app as an app that primarily trans-
mits responses to survey questions has larger "normal" data than
an app that primarily transmits simple reminders the size of SMS

171

Figure 6: Architecture diagram showing how Submit interacts with a client app and Android system resources

messages. By obtaining the software apps perspective on data size,
Submit is able to calibrate its routing mechanisms to best handle
the common communication case on a per app basis and select ap-
propriate channels. The SendObject contains a list of Destination-
Addresses that define the type of transport as well as the necessary
parameters to use for the transport. For example, to utilize HTTP
POST, the DestinationAddress would contain a URL; to utilize an
SMS channel the DestinationAddress would include a phone num-
ber. By implementing DestinationAddress as an abstract type, Sub-
mit is extensible to various communication protocols. SendObjects
also contain the file path to, or string representation of, the data to
be sent on behalf of the client app.

Shared data between Submit and client apps could create race
conditions as apps are often dependent on their internal data stores
being correct and consistent. Submit addresses ownership issues
by removing ambiguity through the assumption that the client app
owns the data until it explicitly grants Submit temporary ownership
rights when it delegates transmission responsibility to Submit. If an
app only provides a DataPropertiesObject which has no pointers to
the data, Submit assumes the app is maintaining ownership of the
data as the client app is only asking for a notification of when to
send the data. In contrast, if the client app provides a SendObject
containing the actual data or a pointer to an accessible external file,
Submit retains ownership of delegated external data until it noti-
fies the client app with the final status of the transmission. Since
both the client app and Submit can be responsible for sending data,
they must communicate the success or failure of data transmission.
Broadcast intents are used to synchronize the sending status. When
Submit is responsible for transmitting the data, it broadcasts the
status of the communication exchange to the client app. Likewise,
if a client app has been notified it is the appropriate time to send
the scheduled data, the client app broadcasts the transmission re-
sult status to update Submit’s internal state.

If the client app delegates responsibility for sending to Submit,
the SendManager selects an appropriate network to transmit the
data based on the DestinationAddresses and the protocols suited
to the available network. By providing multiple client libraries that
implement various protocols, Submit increases a client app’s ability
to communicate using various protocols without requiring expan-
sion of the client app’s code base. Currently implemented commu-
nication protocols include HTTP/SSL and SMS.

Submit’s CommunicationManager is responsible for determin-
ing whether an available channel is appropriate for submitted data.

The CommunicationManager gauges an available channel’s band-
width capacity and costs. The ChannelMonitor listens to system
broadcasts for changes in connectivity, including WiFi events, ad
hoc communication opportunities, and cellular events. It reports
back the current state of connectivity to the SubmitService when
a change is detected. The SubmitQueueManager iterates continu-
ally over the pending data that needs to be transmitted (described
by DataPropertyObjects). With each pass through the queue, it up-
dates the state of each pending data item based on the results from
Submit’s protocol modules.

4.2 Related Work to Submit
Previous research has explored leveraging a variety of networks

for data transmission [8] and splitting data over multiple networks
based on cost and availability [9, 18, 21]. While work exploring
simultaneous data transmission over multiple interfaces has been
shown to improve mobility, power efficiency, and network capac-
ity [8], our work focuses on selecting a single network from a het-
erogeneous combination of different transmission opportunities in
a manner specialized to the deployment context. Submit is most
similar to work that focuses on identifying the best type of network
for data transmission given various contexts and policies. Multi-
Nets [23] proposes real-time switching between different network
interfaces on mobile phones using policies based on power, data
offloading, throughput, and latency. However, policies are config-
ured by the user and are applied to every app that uses the device.
In contrast, Submit provides a library that allows deployment ar-
chitect to configure policies that will only be applied to apps rel-
evant to the application. In this way, Submit is most similar to
Delphi [15], a transport layer module that selects the most appro-
priate network for data transmission given policies set by applica-
tions. However, Delphi assumes operation in an environment with
ubiquitous connectivity and focuses on the transport layer not the
application layer. While it attempts to provide a systematic evalu-
ation of various networks for data transmission, it does not address
many of the issues of developing contexts including intermittent
connectivity and regional pricing policies. Also in contrast to Del-
phi, Submit also uses information about data (e.g., time-sensitivity,
importance) to identify the best method for transfer. Haggle [24]
is another solution that separates application logic from inflexible
pre-programmed transport bindings so that applications can com-
municative in dynamic networking environments. Haggle and Sub-
mit both provide API’s to developers but Submit goes further and

172

Table 2: Average latency for a client app sending data using
Submit and without using Submit

Wi-Fi w/
Submit

Wi-Fi w/o
Submit

3G w/
Submit

3G w/o
Submit

10 KB 0.12s 0.10s 0.59s 0.47s
100 KB 0.40s 0.28s 1.66s 1.28s
1 MB 2.53s 2.03s 10.93s 7.86s
10 MB 22.55s 20.58s 83.95s 80.35s

provides constructs for deployment architects who are not program-
mers to adjust their composable mobile information system. An-
other issue with Haggle is that it proposes a general form of a
naming notation to allow for late-binding that is independent of
the lower-level address. While a good idea, the infrastructure is
not currently available to support some of these assumptions. In
contrast, Submit is designed to work with existing infrastructure to
enable applications to "just work" in different environments with
limited infrastructure. Our work distinguishes itself from previous
research in that it seeks to provide a network management module
at the application layer that enables flexible control to an organiza-
tion deploying a customizable app in areas of limited connectivity.

5. EXPERIMENTS

5.1 Splitting Data Transmission
To measure the baseline impact Submit has on a client app’s

communication performance, we integrated a simple file upload
app with Submit to evaluate network usage and latency. The test
involved the client app using HTTP POST to upload data from a
client to a server with and without Submit. Performance was mea-
sured in two scenarios: Wi-Fi only and 3G only. The tests were
performed on a Samsung Galaxy running Android 4.3 using either
3G or Wi-Fi networks. The results in Table 2 show the average la-
tency for each file size for the ten uploads. As expected, there is
slight latency overhead associated with Submit due its use of re-
mote procedure calls and broadcast intents to communicate with a
client app for each uploaded file.

Submit’s latency additions are counterbalanced with its ability to
minimize network usage according to user preferences. To verify
the reduction of cost for network usage a small experiment was per-
formed for ten minutes where Wi-Fi was disabled, leaving only 3G
accessible. In this experiment, the client app uploaded a randomly
selected file between 5 KB and 100 KB from a directory of files.
For the client using Submit, a threshold value was set that prevented
any file over 7 KB from being sent over a mobile broadband net-
work. After ten minutes, the Wi-Fi was re-enabled for 10 minutes.
After the entire 20 minutes the number of packets sent over Wi-Fi
was compared to the more costly 3G network. The client without
Submit sent over 380.6 KB over 3G whereas the client using Sub-
mit only sent 12.8 KB over 3G. Thus, Submit selectively uses one
network while waiting for cheaper channel to become available.

To understand Submit’s effects on deployment scenarios a small
sampling of 85 actual site visit records were used to calculate data
transmission reductions for the Site Visit scenario described in sec-
tion 2.2. Table 3 shows the calculated average reduction if Submit
managed ODK Collect’s data submission process. By simply sep-
arating transmission of the text portion of the data and delaying the
transmission of the photo’s binary data until the device is in free
Wi-Fi range would mean 0.37% of the total data would be trans-
mitted via cellular and 99.53% of the data would be transmitted
over Wi-Fi. Using Submit’s concept of data priority could further
reduce cellar transmission to 0.1% of total bytes by only transmit-
ting the information about medication inventory.

Table 3: Reduction of transmission if record is split by data
type or data priority for site visits scenario

Bytes Percent
Avg Total Record Transmission Size 330,773 100.00
Avg Data Size 1,213 0.37
Avg Photo Size 329,217 99.53
Avg Priority Data Size 343 0.10

5.2 Peer-To-Peer Transmission
We evaluate the performance of peer-to-peer transmission meth-

ods by comparing 5 methods of transferring data between Nexus 7
devices positioned 0.5 meters apart running Android 4.4.4. WiFi
Direct and Bluetooth were tested using transfer sizes of 1 KB, 10
KB, 100 KB, 1 MB, 10 MB, 100 MB, and 1 GB of data. NFC trans-
fer sizes were limited to data transfer times that were feasible for
generic peer-to peer use (large transfers took too long). NFC with
Bluetooth was tested up to 10 MB, while NFC only was tested up
to 100 KB. Additionally, peer-to-peer transfer using QR codes was
tested by having one Nexus 7 display QR Codes on its screen while
another Nexus 7 read the QR codes with its built-in camera from
0.3 meters away. The ZXing library was used to generate and scan
the QR Codes. While QR Codes specifications state transmission
up to 4 KB of data [2], our results show that transfers are unreli-
able past 1KB of data. The time it takes to scan a QR Code is fairly
consistent as the size of data increases, but the error rate increased
to over 60% for file sizes larger than 1 KB.

Bluetooth and NFC were the fastest transfer options for smaller
amounts of data as shown in Figure 7. As the data size increases
WiFi Direct emerges as the fastest mode of transfer. Until data sizes
exceed 100 MB, the total time for WiFi Direct remains essentially
constant because establishing the connection dominates the transfer
time [12] as shown in Figure 8. WiFi Direct is a realistic choice
for data on the order of 1 MB or larger, for anything lower than
1 MB Bluetooth may be a better option. Figure 7 also shows that
NFC only is significantly slower than Bluetooth enabled NFC4. QR
scanning had the largest variance in the duration of file transfer.
While increasing the error correction level of the code can help
remedy this issue, for data sizes close to 1 KB the QR Code was
too dense to accurately and consistently be scanned.

Since battery life is important in disconnected environments, we
evaluated the power performance of WiFi Direct, Bluetooth, and
QR codes. For each test a connection was established between
two fully charged Nexus 7’s and data was continuously transmit-
ted from one device to the other until the sending device’s battery
was depleted. For consistency the device screens remained on at all
times since the QR method requires the screen to be on and active
usage of devices would cause the screen to be active some percent-
age of the time. The experiments revealed that despite being able to
leave the device in airplane mode, the QR Code scanner consumed
more battery than traditional data transfer methods. The QR scan-
ner took 6.8 hours to drain the battery to a 10% level while WiFi
direct transfer only lasted 0.33 hours longer. In comparison it took
about 9.3 hours of Bluetooth transmission to drain the battery to a
10% level. The results suggest that the power required to continu-
ally use the camera and process bar codes resulted in greater battery
consumption over time than WiFi or Bluetooth transmission.

The main factors for selecting a peer-to-peer method include
transfer time and battery efficiency. Per byte, WiFi is more bat-
tery efficient, but within the range of 100 KB to 1 MB, Bluetooth is
faster. In the case of forest inventory workers, opportunity to charge
the devices is the limiting factor and WiFi should probably be se-
lected, since it is more efficient per byte. For the CHWs, avoiding
the slightly more cumbersome connection process of WiFi might

4http://developer.android.com/training/beam-files/

173

Figure 7: Data transfer times associated with peer-to-peer tech-
nologies with different file sizes. (Log Scale)

Figure 8: Percent of time spent in different phases of WiFi Di-
rect transfer. Connection setup time dominates small file size
transfer.

be more important. The main disadvantage of both Bluetooth and
WiFi Direct is the difficulty for the user to confirm which device
they connected to. While this may be less of an issue in a forest
inventory setting, it is one of the primary concerns in a clinical set-
ting. With both Bluetooth and WiFi Direct, someone attempting to
steal data can spoof their device name and MAC address, poten-
tially deceiving a user. NFC and QR Code communication allows
users to visually clarify that the correct device is receiving the data.
This can be an important advantage when the information is con-
fidential such as medical data. The results show that the QR Code
scanner is slower and less power efficient than NFC with Blue-
tooth. However, there is the possibility of hand-to-hand contact
from using NFC when the two devices are brought close together
to establish the connection. Hand contact could be a disadvantage
in a remote clinical setting where hygiene practices might restrict
such contact. A key advantage of Bluetooth over WiFi Direct is the
ability to pair devices ahead of time, allowing users to more con-
fidently send their data to the correct person. However, if NFC is
not an acceptable option due to hand-to-hand contact or data size,
white-listing Bluetooth devices could increase security in a clinical
setting.

5.3 Usability of Peer-To-Peer Transfer
To understand the overhead of using different peer-to-peer modal-

ities we conducted basic usability tests with 22 participants. The

participants’ ages ranged from 18 to 56, with a mean age of 25.
After initial demographic information was collected, participants
were given a short training session on how to use Submit’s manual
peer-to-peer transfer screen. Participants were then given a list of
ten 1KB transfers tasks to complete, one sending and one receiv-
ing for each of the five transfer methods. The order of the task list
was randomized across participants so that each transfer method
appeared with similar frequency at each position. The first two
tasks for each user used a specific transfer mode (e.g., send using
NFC, then receive using NFC). After the first two tasks, partici-
pants were asked to complete the NASA TLX5 form to rate the dif-
ficulty of the specific transfer mode. Once completed, participants
proceeded with the eight remaining tasks. After the ten tasks were
completed, a semi-structured interview was used to solicit feed-
back about the most confusing part of the transfer process and to
help identify possible improvements to Submit’s peer-to-peer trans-
fer. Participants were also asked to rank the five transfer methods
based on ease of use (on a rank scale from 1 to 5, where 1 was the
easiest transfer method to use and 5 was the most difficult), and
rank them based on efficiency (on a rank scale from 1 to 5, where
1 was quickest transfer method and 5 was the slowest method).

Usability results confirmed the results from transmission perfor-
mance. Users found that using a QR Code to transfer data was
both the least efficient (p < 0.001) and the most difficult method
(p < 0.001) to use6 with a mean efficiency rank of 4.7 and a mean
difficulty rank of 4.6. In three cases, users were unable to suc-
cessfully scan the QR Code due to the lighting conditions of the
room. Users also found that Bluetooth and WiFi Direct were the
fastest (p < 0.001) and easiest (p < 0.001) to use.6 WiFi Direct
had a mean efficiency rank of 2.3 and a mean difficulty rank of
2.3. Bluetooth had a mean efficiency rank of 1.9 and a mean diffi-
culty rank of 1.8.This slightly differs from the data gathered during
channel testing. Due to the longer connection setup time, WiFi Di-
rect should have been outperformed by all four of the other transfer
methods. This discrepancy can be explained by the fact that users
had to select more information during the user testing. The time it
takes to select all this information causes the actual speed of trans-
fer to matter less when compared to the overall time spent using
the application. Additionally, the time it takes to move the devices
together for NFC, and the time it takes to line up the devices for
QR Code scanning was not accounted for in the evaluation of per-
formance. These usability issues dramatically increase the overall
time it takes to transfer using NFC and QR Codes. Testing re-
sults showed QR Codes take an unreliable amount of time due to
user and environment conditions such as reflections due to light-
ing. However, based on the data collected from the NASA TLX
form, there was no significant difference between the average level
or type of stress users experienced while using the different trans-
fer modes (p = 0.57)7. This implies that while users do prefer
some transfer methods above others, the difference between them
is relatively small compared to the overall ease.

While users found Bluetooth and WiFi Direct to be the fastest
and easiest methods and QR Codes to be the slowest and most
cumbersome, results were more varied for the NFC options. Some
users liked the strong visual and physical cues associated with hold-
ing the devices together and touching the screen to beam the data
between devices. Users also appreciated that the receiving NFC
user does not have to select any options since the parameters, such
as from whom you are receiving, are all automatically inferred

5http://humansystems.arc.nasa.gov/groups/tlx/
6Significance calculated using the Kolmogorov-Smirnov Test.
7Significance calculated using the Kruskal-Wallis Test.

174

when you hold the devices together. Other users felt uncomfort-
able with the inevitability of hand to hand contact that comes from
holding the devices together with NFC. Other users expressed con-
cern surrounding potentially dropping the device. Most users held
the tablets together with one hand, and tapped the screen with their
other hand. They thought NFC was slightly more inconvenient than
other mediums, but would not mind using it.

6. CONCLUSION
Configurable mobile data transmission frameworks can enable

deployment architects with limited programming skills to adapt
mobile devices to meet diverse application requirements in chal-
lenged network environments. High-level data and networking ab-
stractions can improve mobile app design paradigms by making
single-purpose apps more malleable to resource-constrained con-
texts where issues such as affordability, infrastructural constraints,
institutional capacity, and technical support are nontrivial. Submit
improves deployments by supporting variations in deployment con-
texts in a systematic manner. Submit’s abstractions decouple data
and connectivity to enable application-level optimization of sparse
heterogeneous networks. Submit identifies available connectivity
in challenged networking environments and sends appropriate data
over available channels in limited resources settings.

Experiences from the field highlight the fact that the selection
of appropriate technologies for data transmission involves account-
ing for inherent data properties, contextual data properties, and net-
work properties. Submit enables deployment architects to shape the
communication priorities of the components comprising a larger
application. Several deployment scenarios of interest benefit from
peer-to-peer connectivity when centralized infrastructure is unavail-
able for data transmission. Which peer-to-peer transfer method to
use should also be based on inherent properties (e.g. data size),
contextual properties (e.g. data importance, security), and battery
constraints. Our experiments showed the most significant barrier to
peer-to-peer transmission is the time it takes for users to set up a
peer-to-peer connection. In order to address these challenges, Sub-
mit handles peer-to-peer connections internally and automatically
populates most settings before providing a unified UI to the user.

Creating software tools that enable application-level communi-
cation optimizations through the selection of appropriate data for
transmission over available network channels represents a neces-
sary complement to infrastructural improvement. Data communi-
cation needs to be adaptable to deployment conditions and solu-
tions that focus on optimizations to the network transport layer do
not have the flexibility to leverage the sparse challenged network
conditions that exist. Therefore, adaptable frameworks that create
abstractions that target application-level users (as opposed to devel-
opers adapting to network transport layers) are needed to empower
deployment architects to easily customize application deployments
to match an organizations requirements. For mobile tools to be suc-
cessful in resource-constrained environments they should be com-
posable by non programmers, deployable by resource-constrained
organizations, usable by minimally trained users, and robust to in-
termittent power and networking outages.

7. ACKNOWLEDGMENTS
We thank Samuel Sudar for his help on this project. We also

thank Neha Kumar and Elizabeth Belding for their insightful feed-
back on the paper. The material in this paper is based upon work
supported by NSF research grant IIS-1111433, NSF Graduate Re-
search Fellowship grants DGE-0718124 and DGE-1144085, and
USAID contract AID-OAA-A-13-00002.

8. REFERENCES
[1] Obami. http://www.obami.com/portals/obami/about_obami.
[2] Qr Code. http://www.qrcode.com/en/about/version.html.
[3] The World in 2011: ICT Facts and Figures.

https://www.itu.int/en/ITU-D/Statistics/Documents/
facts/ICTFactsFigures2011-e.pdf, 2011.

[4] My MedLab. http://www.mymedlab.com/, 2013.
[5] Tribal Initiatives. http://transition.fcc.gov/indians, Mar 2013.
[6] The World in 2013: ICT Facts and Figures.

https://www.itu.int/en/ITU-D/Statistics/Documents/
facts/ICTFactsFigures2013-e.pdf, 2013.

[7] M-pesa. http://www.safaricom.co.ke/m-pesa/, 2014.
[8] P. Bahl, A. Adya, J. Padhye, and A. Walman. Reconsidering Wireless Systems

with Multiple Radios. SIGCOMM Computing Communication Review,
34(5):39–46, October 2004.

[9] A. Balasubramanian, R. Mahajan, and A. Venkataramani. Augmenting Mobile
3G Using WiFi. In Proc of the 8th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’10, pages 209–222, 2010.

[10] E. Brewer et al. The Challenges of Technology Research for Developing
Regions. IEEE Pervasive Computing, 5(2):15–23, 2006.

[11] W. Brunette et al. Open Data Kit 2.0: Expanding and Refining Information
Services for Developing Regions. In Proc of the 14th Workshop on Mobile
Computing Systems & Applications, HotMobile ’13, 2013.

[12] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano. Device-to-Device
Communications with Wi-Fi Direct: Overview and Experimentation. Wireless
Communications, IEEE, 20(3):96–104, June 2013.

[13] C. Cobb, S. Sudar, R. Anderson, F. Roesner, and T. Kohno. Work in progress,
2015.

[14] L. B. Deek, K. C. Almeroth, M. P. Wittie, and K. A. Harras. Exploiting Parallel
Networks Using Dynamic Channel Scheduling. In Proc of the 4th Annual
International Conference on Wireless Internet, WICON ’08, pages 1–9, ICST,
Brussels, Belgium, Belgium, 2008.

[15] S. Deng, A. Sivaraman, and H. Balakrishnan. All Your Network Are Belong to
Us: A Transport Framework for Mobile Network Selection. In Proc of the 15th
Workshop on Mobile Computing Systems & Applications, HotMobile ’14, 2014.

[16] B. DeRenzi et al. E-IMCI: Improving Pediatric Health Care in Low-income
Countries. In Proc of the Conference on Human Factors in Computing Systems,
CHI ’08, pages 753–762, 2008.

[17] B. DeRenzi et al. A framework for case-based community health information
systems. In Global Humanitarian Technology Conference (GHTC), 2011 IEEE,
pages 377–382. IEEE, 2011.

[18] B. Han et al. Mobile Data Offloading Through Opportunistic Communications
and Social Participation. IEEE Transactions on Mobile Computing,
11(5):821–834, May 2012.

[19] C. Hartung et al. Open Data Kit: Tools to Build Information Services for
Developing Regions. In Proc of the 4th ACM/IEEE Int Conf on Information and
Communication Technologies and Development, ICTD ’10, 2010.

[20] R. Heeks. Avoiding eGov Failure: Design-Reality Gap Techniques.
www.egov4dev.org/success/techniques/drg.shtml, 2008.

[21] Y. Li, G. Su, P. Hui, D. Jin, L. Su, and L. Zeng. Multiple Mobile Data
Offloading Through Delay Tolerant Networks. In Proc of the 6th ACM
Workshop on Challenged Networks, CHANTS ’11, pages 43–48, 2011.

[22] M. Martins and R. Fonseca. Application Modes: A Narrow Interface for
End-user Power Management in Mobile Devices. In Proc of the 14th Workshop
on Mobile Computing Systems and Applications, HotMobile ’13, 2013.

[23] S. Nirjon et al. MultiNets: Policy Oriented Real-Time Switching of Wireless
Interfaces on Mobile Devices. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2012 IEEE 18th, pages 251–260, April 2012.

[24] J. Scott et al. Haggle: A Networking Architecture Designed Around Mobile
Users. In WONS 2006: Third Annual Conference on Wireless On-demand
Network Systems and Services, pages 78–86, 2006.

[25] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs: Modeling and
Analysis of a Three-tier Architecture for Sparse Sensor Networks. Ad Hoc
Networks, 1(2âĂŞ3):215 – 233, 2003.

[26] K. Shirima et al. The Use of Personal Digital Assistants for Data Entry at the
Point of Collection in a Large Household Survey in Southern Tanzania.
Emerging themes in epidemiology, 4(1):5, 2007.

[27] R. W. Stevens and G. R. Wright. TCP/IP Illustrated: Vol. 2: The
Implementation, 1995.

[28] M. Vitos, J. Lewis, M. Stevens, and M. Haklay. Making Local Knowledge
Matter: Supporting Non-literate People to Monitor Poaching in Congo. In Proc
of the 3rd ACM Symp on Computing for Development, ACM DEV ’13, 2013.

[29] L. Wei-Chih et al. UjU: SMS-based Applications Made Easy. In Proc of the
First ACM Symposium on Computing for Development, ACM DEV ’10, 2010.

[30] K.-K. Yap et al. Making Use of All the Networks Around Us: A Case Study in
Android. In Proc of the 2012 ACM SIGCOMM Workshop on Cellular Networks:
Operations, Challenges, and Future Design, CellNet ’12, pages 19–24, 2012.

175

