

Getting Started with HLS Interstitials
Preliminary Specification and Implementation
Guide

Version 1.0b4

July 12, 2021

Introduction 3

Overview 4

Execution Model 5

New AttributeValue type 6

Interstitial DATERANGE Schema 7

Interstitial query parameters 8

AVFoundation API For Client-side Insertion 10

Client Behavior 10

Example: Interstitial EXT-X-DATERANGE 12

Example: Scheduling Interstitials 12

Example: Monitoring Interstitial Playback 12

 Copyright © 2020-2021 Apple Inc. 1

Document Revision History 14

 Copyright © 2020-2021 Apple Inc. 2

Introduction
The HTTP Live Streaming (HLS) protocol delivers live and on-demand audiovisual content to
global-scale audiences. Vendors typically insert separate interstitial content into their primary
presentations in order to display advertising, branding, or other information to viewers.

High-level interstitial support in HLS makes it easier to create and deliver features such as
bumpers and mid-roll ads, as well as more advanced experiences that are difficult to achieve
with earlier techniques, such as late binding to current ad inventory and dynamic scheduling.

This document outlines how backend production tools can adopt a new playlist metadata
schema to insert interstitial content into HLS streams. It also describes new AVFoundation APIs
that applications on Apple platforms can use to discover, monitor, and schedule interstitials for
playback.

 Copyright © 2020-2021 Apple Inc. 3

Overview
Servers can schedule interstitials by placing metadata (EXT-X-DATERANGE tags) into the Me-
dia Playlists of the primary asset. Clients can schedule interstitials using AVFoundation APIs.
Interstitials can be scheduled (and unscheduled) dynamically during playback.

Interstitial themselves are self-contained media assets. They can be scheduled anywhere on
the timeline of a primary media asset. Clients can schedule interstitials against unmodified pri-
mary assets. While interstitials must be VOD assets, they can be scheduled against either VOD
or live primary content (including Low-Latency HLS streams).

Interstitials are specified by URL. The player loads the resource specified by the URL after it
buffers the primary asset to the scheduled interstitial playback time. This allows for late binding
to ad inventory. Since an interstitial is described by a single URL, a server can respond to it with
a limited number of HTTP redirects without a major impact on performance.

An interstitial request can either be for a single interstitial asset or a list of assets. In the second
case, the composition of the list can be determined when the server responds to the interstitial
request.

Although content providers are encouraged to provide interstitial assets with a suitable ladder
of bitrate tiers, it is not necessary for interstitials to match the tier structure of the primary con-
tent. Similarly it is not necessary to provide matching alternative language renditions, although it
is recommended. Interstitials do not need to use the same codecs as the primary content, al-
though using different codecs will cause transition delays on certain devices such as some
third-party AirPlay receivers.

It is possible to specify that user navigation be restricted while playing interstitials. These re-
strictions are enforced at the player UI level, which is AVKit or custom application code while
playing on-device, or the AirPlay receiver while AirPlay is active,

Devices that do not implement HLS interstitial support will ignore server-generated interstitial
events when playing a primary asset. Content vendors seeking backward compatibility can con-
tinue to use static interstitial insertion techniques, or simply encode slates or national ads di-
rectly into the primary asset, and override them with HLS interstitials for newer devices. Or they
can forgo interstitial playback on older devices if the population is small enough to allow it.

Interstitials scheduled inside other interstitials are ignored by clients.

 Copyright © 2020-2021 Apple Inc. 4

Execution Model
Interstitial playback on Apple devices is accomplished using two players: a primary AVPlayer
created by the client application which plays the primary asset, and an interstitial AVQueuePlay-
er that is created automatically by the primary AVPlayer when it is necessary to play interstitial
assets.

The use of two players allows interstitial content to be scheduled anywhere on the primary item
timeline, even in the middle of a video GOP.

AVFoundation arranges the buffering and playback transitions between primary and interstitial
content to minimize disruption. For best results, interstitial events should be scheduled early
enough in advance of playback to allow time for buffering.

For video playback, AVFoundation uses the same AVPlayerLayer(s) provided to the primary AV-
Player to display the interstitial content as well. Interstitial content should use the same aspect
ratio as the primary content to minimize disruption.

Clients that wish to monitor interstitial playback to perform quartile reporting, offer custom con-
trols or perform other tasks can do so by observing the interstitial AVQueuePlayer.

 Copyright © 2020-2021 Apple Inc. 5

New AttributeValue type
The following type definition will be added to the HLS spec, section 4.2 Attribute Lists:

o enumerated-string-list: a quoted-string containing a comma-separated list of enumerated-
strings from a set that is explicitly defined by the AttributeName. Each enumerated-string in the
list is a string consisting of characters from the set [A-Z] and “-“. The list SHOULD NOT repeat
any enumerated-string. To support forward compatibility, clients MUST ignore any unrecog-
nized enumerated-strings in an enumerated-string-list.

 Copyright © 2020-2021 Apple Inc. 6

Interstitial DATERANGE Schema
The server can insert EXT-X-DATERANGE tags to tell the player to schedule interstitial play-
back. The EXT-X-DATERANGE CLASS “com.apple.hls.interstitial” specifies how an interstitial is
to be scheduled.

Recall that a live Playlist reload can update an existing DATERANGE with new attributes by in-
cluding a new EXT-X-DATERANGE tag with the same ID. (Existing attribute values cannot be
changed.) Also note that all Renditions of a particular Master Playlist must have the same set of
EXT-X-DATERANGE tags.

Interstitial EXT-X-DATERANGE tags can have the following attributes:

CLASS
The CLASS attribute is required. Its value must be “com.apple.hls.interstitial”.

X-ASSET-URI
The value of the X-ASSET-URI is a quoted-string absolute URL for a single interstitial asset.

X-ASSET-LIST
The value of the X-ASSET-LIST is a quoted-string URL to a JSON object. The JSON object
must contain a key/value pair whose key is “ASSETS” and whose value is a JSON array of As-
set-Description JSON objects. (Note that keys in a JSON object are case-sensitive.) Each As-
set-Description JSON object MUST have a “URI” member whose value is a quoted-string abso-
lute URL for a single interstitial asset, and a DURATION member whose value is a decimal-float-
ing-point indicating the duration of the interstitial asset in seconds. The client is expected to
play the interstitial assets back-to-back in the order that they appear in the ASSETS array.

X-RESUME-OFFSET
The value of X-RESUME-OFFSET is a decimal-floating-point of seconds that specifies where
primary playback should resume following the playback of the interstitial. It is expressed as a
time offset from where the interstitial playback was scheduled on the primary player timeline. A
typical value for X-RESUME-OFFSET is zero. If the X-RESUME-OFFSET is not present, the play-
er uses the duration of interstitial playback for the resume offset, which is appropriate for live
playback where playback is to be kept at a constant delay from the live edge, or for VOD play-
back where the HLS interstitial is intended to replace content in the primary asset.

X-SNAP
The value of the X-SNAP attribute is an enumerated-string-list of Snap Identifiers. The defined
Snap Identifiers are: OUT and IN.

If the list contains OUT then the client SHOULD locate the segment boundary closest to the
START-DATE of the interstitial in the Media Playlist of the primary content and transition to the
interstitial at that boundary. If more than one Media Playlist is contributing to playback (audio
plus video for example), the player SHOULD transition at the earliest segment boundary.

 Copyright © 2020-2021 Apple Inc. 7

If the list contains IN then the client SHOULD locate the segment boundary closest to the
scheduled resumption point from the interstitial in the Media Playlist of the primary content and
resume playback of primary content at that boundary. If more than one Media Playlist is con-
tributing to playback, the player SHOULD transition at the latest segment boundary.

X-PLAYOUT-LIMIT
The value of X-PLAYOUT-LIMIT is a decimal-floating-point of seconds that specifies a limit for
the playout time of the entire interstitial. If it is present, the player should end the interstitial if
playback reaches that offset from its start. Otherwise the interstitial should end upon reaching
the end of the interstitial asset(s).

X-RESTRICT
The value of the X-RESTRICT attribute is an enumerated-string-list of Navigation Restriction
Identifiers. The defined Navigation Restriction Identifiers are: SKIP and JUMP.

If the list contains SKIP then while the interstitial is being played, the client should not allow the
user to seek forward from the current playhead position or set the rate to greater than the regu-
lar playback rate until playback reaches the end of the interstitial.

If the list contains JUMP then the client should not allow the user to seek from a position in the
primary asset earlier than the START-DATE attribute to a position after it without first playing the
interstitial asset, even if the interstitial at START-DATE was played through earlier. If the user
attempts to seek across more than one interstitial, the client should choose at least one intersti-
tial to play before allowing the seek to complete.

Vendor-defined Attributes
Content vendors may define additional attributes for the com.apple.hls.interstitial CLASS. Ven-
dor-defined attributes should be prefixed by X- and should use a reverse-DNS syntax to avoid
collisions

Class rules
A client with specific knowledge of the presentation rules for an asset MAY override restrictions
specified by EXT-X-DATERANGE RESTRICT attributes if such an action is consistent with those
rules.

Two or more interstitials scheduled at the same START-DATE should be played in the order that
their EXT-X-DATERANGE tags appear in the playlist. In that case, any X-RESUME-OFFSET val-
ues are cumulative.

An EXT-X-DATERANGE tag with a CLASS of “com.apple.hls.interstitial” has the following con-
straints:

• It must contain either an X-ASSET-URI attribute or an X-ASSET-LIST attribute but not both.

Interstitial query parameters
Packagers producing “com.apple.hls.interstitial” EXT-X-DATERANGE tags should ensure that
X-ASSET-URI and X-ASSET-LIST requests contain an _HLS_interstitial_id query parameter

 Copyright © 2020-2021 Apple Inc. 8

whose value is the (quoted) ID attribute value of the EXT-X-DATERANGE tag. This supports in-
teroperability between content vendors and decisioning servers.

Certain clients support setting the X-PLAYBACK-SESSION-ID request header with a common,
globally-unique value on every HTTP request associated with a particular playback session.
Such clients should add an _HLS_primary_id query parameter to X-ASSET-URI and X-ASSET-
LIST requests whose value matches the X-PLAYBACK-SESSION-ID of the primary playback
session. This provides useful context for decisioning servers.

Clients that cannot set the the X-PLAYBACK-SESSION-ID request header should create a glob-
ally-unique value for every primary playback session, and provide this value as an _HLS_prima-
ry_id query parameter on both the Master Playlist request for the primary asset and the X-AS-
SET-URI and X-ASSET-LIST requests made on behalf of that asset.

 Copyright © 2020-2021 Apple Inc. 9

AVFoundation API For Client-side Insertion
Clients can use AVFoundation API to observe and modify the interstitial playback schedule.

AVPlayerInterstitialEvent
An AVPlayerInterstitialEvent represents a single period of interstitial playback that can be
scheduled on a primary asset timeline. Its properties include the time (or date) at which the in-
terstitial is scheduled on the primary timeline, its resumption offset, navigation restrictions, and
an array of template AVPlayerItems that will be used to instantiate AVPlayerItems on the intersti-
tial AVQueuePlayer during playback.

AVPlayerInterstitialEventObserver
An AVPlayerInterstitialEventObserver is used to discover the currently-scheduled set of AV-
PlayerInterstitialEvents and to monitor their playback progress. It is instantiated against the AV-
Player of the primary content. Its properties include the AVQueuePlayer used for interstitial
playback, an array of currently-scheduled AVPlayerInterstitialEvents, and the AVPlayerIntersti-
tialEvent that is currently playing. The AVPlayerInterstitialEventObserver broadcasts notifica-
tions whenever these events change.

AVPlayerInterstitialEventController
The AVPlayerInterstitialEventController is a subclass of AVPlayerInterstitialEventObserver. It can
be used to change the set of currently scheduled AVPlayerInterstitialEvents. It can also be used
to cancel a currently playing event , supplying a resumption offset that overrides the one in the
event.

Additions to AVPlayer and AVPlayerItem
AVPlayer has an additional AVPlayerWaitingReason for interstitial playback: AVPlayerWaiting-
DuringInterstitialEventReason. The primary AVPlayer will pause playback and wait for AVPlay-
erWaitingDuringInterstitialEventReason while the interstitial AVQueuePlayer plays interstitial
content.

The AVPlayerItem property automaticallyHandlesInterstitialEvents is normally YES, but it can be
set to NO to cause the AVPlayerItem to ignore AVPlayerInterstitialEvents specified by the server
in EXT-X-DATERANGE tags.

An AVPlayerItem playing on the interstitial AVQueuePlayer will have a non-nil templatePlayer-
Item property that matches a template AVPlayerItem in the current AVPlayerInterstitialEvent.

Client Behavior
If an interstitial specifies a non-zero resume offset and the user tries to seek to a time between
the start of the interstitial and its resumption point on the primary asset timeline, the client
should begin playback from the start of the interstitial.

If a request for either an interstitial asset URL or an asset list URL returns an error, the client
should cancel playback of the interstitial with a resume offset of 0.

 Copyright © 2020-2021 Apple Inc. 10

Clients should allow a generous amount of time (up to a minute) for a server to respond to re-
quests for interstitial assets or asset lists, to enable the server to perform back-end decisioning.
Servers must respond quickly enough to avoid playback disruptions on the client.

 Copyright © 2020-2021 Apple Inc. 11

Example: Interstitial EXT-X-DATERANGE
In this playlist an EXT-X-DATERANGE tag schedules a 15-second ad to play four seconds into a
six-second primary asset. The player will play the interstitial and then resume playback of the
primary asset where it left off. Seeking and scanning forward will be disabled during interstitial
playback. The EXT-X-DATERANGE tag includes a vendor-defined beacon attribute that can be
processed by the client.

#EXTM3U
#EXT-X-TARGETDURATION:6
#EXT-X-PROGRAM-DATE-TIME:2020-01-02T21:55:40.000Z
#EXTINF:6,
main1.0.ts
#EXT-X-ENDLIST
#EXT-X-DATERANGE:ID="ad1",CLASS="com.apple.hls.interstitial",START-
DATE="2020-01-02T21:55:44.000Z",DURATION=15.0,X-ASSET-URI="http://example.com/
ad1.m3u8",X-RESUME-OFFSET=0, X-RESTRICT="SKIP,JUMP",X-COM-EXAMPLE-BEACON=123

Example: Scheduling Interstitials
This example shows how to use an AVPlayerInterstitialEvent with an AVPlayerInterstitialEvent-
Controller to schedule the playback of two interstitial assets (“ad1URL” and “ad2URL”) ten sec-
onds after the beginning of a primary asset “movieURL.” Playback of the primary item resumes
at the point where it left off.

let player = AVPlayer(url: movieURL)
let controller = AVPlayerInterstitialEventController(primaryPlayer: player)
let adPodItems = [AVPlayerItem(url: ad1URL), AVPlayerItem(url: ad2URL)]
let event = AVPlayerInterstitialEvent(primaryItem: player.curentItem, time: CMTime(seconds: 10,
preferredTimescale: 1), templateItems: adPodItems, restrictions: [], resumptionOffset: .zero)
controller.events = [event]
player.play()

Example: Monitoring Interstitial Playback
This example shows how to use an AVPlayerInterstitialEventObserver to discover when play-
back of an interstitial asset begins or ends so that it can update its user interface.

let player = AVPlayer(url: movieURL)
// The movieURL has interstitials inserted using EXT-X-DATERANGE tags.
let observer = AVPlayerInterstitialEventObserver(primaryPlayer: player)

 Copyright © 2020-2021 Apple Inc. 12

NotificationCenter.default.addObserver(
 forName: AVPlayerInterstitialEventObserver.currentEventDidChangeNotification,
 object: observer,
 queue: OperationQueue.main) {
 notification_ in
 self.updateUI(observer.currentEvent)
}

 Copyright © 2020-2021 Apple Inc. 13

Document Revision History
This table describes the changes to Getting Started with HLS Interstitials

Date Revision Notes

2020-12-14 0.1 First revision

2021-02-15 1.0b1 First public draft. Added PLAYOUT-LIMIT

2021-03-01 1.0b2 Added SNAP-OUT and SNAP-IN

2021-05-12 1.0b3 Introduced enumerated-string-list

2021-06-15 1.0b4 Add _HLS_primary_id and _HLS_interstitial_id

 Copyright © 2020-2021 Apple Inc. 14

