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Introduction
• I’m Ted Lemon, I work for Nominum, mostly on forward-looking 

standards work in the IETF


• The work presented today will be work done in the Homenet working 
group and DNS Service Discovery working group in the IETF


• I’m the author of the Homenet Naming Architecture, which is a work 
in progress


• I’m also working with Stuart Cheshire from Apple Computer on 
improvements to DNS Service Discovery for the homenet


• Some of the work discussed here has not yet been put into working 
group documents
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Basic Service Discovery
• Discover Addressing


• Discover Routing


• Discover DNS Server(s)


• Look up services using names and URLS


• This basic pattern is followed by the homenet router and 
by devices on the homenet


• The key network service required for this to work is DNS
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DNS Service

• DNS is how hosts discover IP addresses of services on 
the Internet


• This includes things like malware servers and botnet 
command and control servers


• The servers we (Nominum) make use this to detect and 
block connections to malware servers, and to discover 
the presence of malware on end-user home networks
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Quarantining with NAT

• A home gateway with NAT has a single IP address


• All queries come from that address


• Can’t quarantine just the infected host


• Solution: put a DNS Proxy in the router that adds 
identifying information so that we can quarantine the 
individual host
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New requirements
• Have a stable address prefix for the home net that works even if the 

ISP service isn’t available


• Have a prefix from each provider for which a connection exists that 
can be subdivided to support multiple subnet links


• Route packets to the right ISP, based on the source address chosen 
by the host (we don’t control)


• Provide service discovery across subnet boundaries


• Configure all of this automatically, with no user intervention


• Support for multiple provisioning domains (RFC 7556)



• Routing Protocol: Babel


• Network Management Protocol: HNCP


• Service Discovery Protocol: DNSSD


• 802.11 (SSID) and 802.11i (WPA2 password)


• Homenets are plug and play: plug them together and they start 
delivering packets and service.  No user configuration required.


• Every link in homenet has a separate prefix, and every homenet 
has a ULA prefix plus zero or more ISP prefixes

Protocols



Babel
• Good at routing multiply-connected network with links of 

different quality


• Modified for Homenet to support source-specific routing: 
whichever prefix a host chooses to connect, that will 
determine through which ISP that flow is routed.


• Information published by router A may be sent to router B 
and then consumed by router C


• No security protocol


• Relies on multicast



HNCP
• Flood fill using trickle algorithm


• Identifies network edges


• Identifies internal links


• Identifies routers


• Identifies links between routers


• No encryption, no authentication


• Relies on multicast



DNSSD

• Uses the DNS protocol


• Uses RFC 6763 service discovery


• Leverages Multicast DNS (RFC 6762)
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DNSSD Security
• Could use DNSSEC for authentication


• But DNSSEC depends on a trust chain from the root and,


• Homenets have no registered domain name


• Options:


• Register a domain name


• Provide a special trust root that can be validated by host 
resolvers


• No DNSSEC



HNCP/Babel security

• Head in the sand: we don’t need security, link security 
(WPA2) is enough, anything else is too complicated: do 
nothing


• Shared secret authentication, with secrets shared in the 
clear or protected using DTLS, keyed with (hand-wave)


• Lay the groundwork for a secure network now, figure out 
some of the details as we go along.



What would we need to 
secure the network?

• Each service provider (example: homenet router) 
generates a public/private key pair


• Public Key shared to all participants using HNCP, no 
encryption required because public, but no trust 
establishment mechanism either


• Now we can generate shared secrets between each 
router or sign data using public keys


• Public keys can then be used to authenticate DTLS or 
TLS connections between participants



What about trust?

• Sharing public keys gives us authentication of who holds 
the key, and encryption if we need it, but does not give us 
trust (authorization).


• This at least lets us identify a bad actor that’s harming the 
network and remove it, but it can always generate a new 
identity.


• We need a way to establish trust for devices that we 
authenticate with these keys



How might we establish 
trust?

• Print a key fingerprint on each device, have devices display 
their fingerprint in the UI along with their public key, have 
sysadmin compare printed fingerprint to UI display


• Hook devices together with wires (only works for devices 
with ethernet ports), push a button, and do trust 
establishment based on security of link plus user signal


• Leap-of-faith over WiFi based on user signal (assume that 
nobody bad is eavesdropping or MiTMing).


• Etc.   We plan to have another brainstorming session in 
Singapore (IETF 100).



Who is the sysadmin?
• Did I mention that the operator of this network has no idea 

what authentication and authorization are?   And that the 
network is supposed to self-configure and self-manage?


• This makes establishing trust really hard


• Best current theory is that a web app running on user’s 
phone with access to the camera could walk user through 
trust establishment process and display basic network status


• Alternative: ISP manages home network as a service (but 
how safe is this really)?



What about DNSSD trust 
establishment?

• A replacement for mDNS.


• Allows services to be discovered on multiple links


• Assumes that most devices will not know about DNSSD, 
and will just use mDNS


• Most service-providing devices (e.g., printers, set-top 
boxes, TVs) will not participate in HNCP


• Therefore if trust is to be established, will be done using 
DNS keys



DNSSD FCFS
• DNSSD service providers claim and protect names using DNS Update 

(RFC2136) in combination with DNS keys and SIG(0).


• Service publishes name + key, signs updates using SIG(0) with that key


• If the name isn’t taken, it’s claimed and assigned that key; otherwise service 
has to choose a new name


• Subsequent updates to that name must use the same key, or are rejected.


• Trust established as with mDNS: user chooses service, it works, they trust it.


• Better than mDNS, though: once trust is established, service can’t be 
spoofed


• DNS keys can also be used for TLS/DTLS if service supports that.
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Web UI issues
• Most home routers have a web UI


• Web UI is over http, passwords in the clear


• Without a valid PKI cert, web UI will be seen as insecure by 
browser when submitting passwords, producing a warning. 


• Don’t want to train user to click through warnings.


• We need a cert the browser will accept


• There is no way to get PKI certs, and browsers currently do 
not accept DNSSEC certs



Solutions
• Forbid web UI, replace with management API (which we 

would then have to specify in detail).


• Get browser vendors to support DNSSEC/DANE/TLSA as 
a way to secure TLS sessions


• Make it possible for home networks to get real domain 
names automatically, then use Let’s Encrypt/ACME to get 
PKI certs for browsers (chicken and egg problem, 
though).


• ???



Home networks are 
ephemeral

• Devices can be unplugged, factory reset, etc.


• Keys can be lost.


• Once trust is established, if devices remember keys, and 
then those keys are lost, how do we re-establish trust?


• Phone app serves as key store?


• Master key and key revocation protocol?


• This is an open issue—the working group has not yet gamed 
this out, but it needs to be addressed.



This is a really hard problem

• This is why some homenet people simply throw their 
hands up and say "why bother?"


• If we did everything we’ve currently envisioned, we still 
would have gaps.


• But if we do nothing, we’ll have nothing but gaps.



Current plan
• Put as many security building blocks in place as possible


• Try to clearly understand how to use them when network is 
completely unmanaged, sort-of managed and professionally 
managed


• Try to identify gaps and think about how to address them


• Try not to miss any opportunity to secure one of the protocols used 
in homenet, but don’t think that encryption=security or 
authentication=security without considering how trust is 
established


• Remember that perfect is the enemy of good enough.
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