
Service Discovery and Trust in a Homenet
Ted Lemon <ted.lemon@nominum.com>

mailto:ted.lemon@nominum.com

Introduction
• I’m Ted Lemon, I work for Nominum, mostly on forward-looking

standards work in the IETF

• The work presented today will be work done in the Homenet working
group and DNS Service Discovery working group in the IETF

• I’m the author of the Homenet Naming Architecture, which is a work
in progress

• I’m also working with Stuart Cheshire from Apple Computer on
improvements to DNS Service Discovery for the homenet

• Some of the work discussed here has not yet been put into working
group documents

Home network
ISP

Home Router

iPhone
Tablet

Desktop Computer

TV/Set-top Box

Game Console

Basic Service Discovery
• Discover Addressing

• Discover Routing

• Discover DNS Server(s)

• Look up services using names and URLS

• This basic pattern is followed by the homenet router and
by devices on the homenet

• The key network service required for this to work is DNS

Home network
ISP Edge Router

Home Router

iPhone
Tablet

Desktop Computer

TV/Set-top Box

Game Console

DNS
Cache

DNS Service

• DNS is how hosts discover IP addresses of services on
the Internet

• This includes things like malware servers and botnet
command and control servers

• The servers we (Nominum) make use this to detect and
block connections to malware servers, and to discover
the presence of malware on end-user home networks

Home network
ISP Edge Router

Home Router

iPhone
Tablet

Desktop Computer

TV/Set-top Box

Game Console

DNS
Cache

Home network
ISP Edge Router

Home Router

iPhone
Tablet

Desktop Computer

TV/Set-top Box

Game Console

DNS
Cache

IPv4 + Network Address Translation (NAT)

Quarantining with NAT

• A home gateway with NAT has a single IP address

• All queries come from that address

• Can’t quarantine just the infected host

• Solution: put a DNS Proxy in the router that adds
identifying information so that we can quarantine the
individual host

Home network
ISP Edge Router

iPhone
Tablet

Desktop Computer

TV/Set-top Box

Game Console

DNS
Cache

IPv4 + Network Address Translation (NAT)

DNS Proxy

Home Router

iPhone

Tablet
Desktop Computer TV/Set-top Box

Game Console

DNS Proxy

Web UI

DHCP Client

DHCP Server

Home Router

Wifi Link Ethernet
Switch

IPv4

iPhone

Tablet
Desktop Computer TV/Set-top Box

Game Console

DNS Proxy

Web UI

DHCP Client

Router Advert

Home Router

Wifi Link Ethernet
Switch

IPv4IPv6

Home Router (edge)

iPhone
Tablet

Desktop Computer

TV/Set-top Box

Game Console

Wifi Link Ethernet
Switch

IPv4IPv6

Home Router

Ethernet
SwitchWifi Link

Home Router (edge)

iPhone
Tablet

Desktop Computer

TV/Set-top Box

Game Console

Wifi Link Ethernet
Switch

IPv4IPv6

Home Router

Ethernet
Switch

Wifi Link

Home Router (edge)

IPv4IPv6

Home Router

Ethernet
SwitchWifi Link

Home Router (edge)

Cellular Link

Ethernet
Switch

Wifi Link

IPv4IPv6

Wifi Link

New requirements
• Have a stable address prefix for the home net that works even if the

ISP service isn’t available

• Have a prefix from each provider for which a connection exists that
can be subdivided to support multiple subnet links

• Route packets to the right ISP, based on the source address chosen
by the host (we don’t control)

• Provide service discovery across subnet boundaries

• Configure all of this automatically, with no user intervention

• Support for multiple provisioning domains (RFC 7556)

• Routing Protocol: Babel

• Network Management Protocol: HNCP

• Service Discovery Protocol: DNSSD

• 802.11 (SSID) and 802.11i (WPA2 password)

• Homenets are plug and play: plug them together and they start
delivering packets and service. No user configuration required.

• Every link in homenet has a separate prefix, and every homenet
has a ULA prefix plus zero or more ISP prefixes

Protocols

Babel
• Good at routing multiply-connected network with links of

different quality

• Modified for Homenet to support source-specific routing:
whichever prefix a host chooses to connect, that will
determine through which ISP that flow is routed.

• Information published by router A may be sent to router B
and then consumed by router C

• No security protocol

• Relies on multicast

HNCP
• Flood fill using trickle algorithm

• Identifies network edges

• Identifies internal links

• Identifies routers

• Identifies links between routers

• No encryption, no authentication

• Relies on multicast

DNSSD

• Uses the DNS protocol

• Uses RFC 6763 service discovery

• Leverages Multicast DNS (RFC 6762)

HNR1

HNR2

HNR3

HNR1

HNR2

HNR3

Printers?

HNR1

HNR2

HNR3

Discovery
Relay

Discovery
Broker

DNS: printers?

HNR1

HNR2

HNR3

Discovery
Relay

Discovery
Broker

DNS: printers?

HNR1

HNR2

HNR3

Discovery
Relay

Discovery
Broker

DNS: printers?

HNR1

HNR2

HNR3

Discovery
Relay

Discovery
Broker

DNS: printers?
mDNS: printers?

HNR1

HNR2

HNR3

Discovery
Relay

Discovery
Broker

mDNS: me!

HNR1

HNR2

HNR3

Discovery
Relay

Discovery
Broker

mDNS: me!

HNR1

HNR2

HNR3

Discovery
Relay

Discovery
Broker

mDNS: me!

HNR1

HNR2

HNR3

Discovery
Relay

Discovery
Broker

DNS: me!
mDNS: me!

DNSSD Security
• Could use DNSSEC for authentication

• But DNSSEC depends on a trust chain from the root and,

• Homenets have no registered domain name

• Options:

• Register a domain name

• Provide a special trust root that can be validated by host
resolvers

• No DNSSEC

HNCP/Babel security

• Head in the sand: we don’t need security, link security
(WPA2) is enough, anything else is too complicated: do
nothing

• Shared secret authentication, with secrets shared in the
clear or protected using DTLS, keyed with (hand-wave)

• Lay the groundwork for a secure network now, figure out
some of the details as we go along.

What would we need to
secure the network?

• Each service provider (example: homenet router)
generates a public/private key pair

• Public Key shared to all participants using HNCP, no
encryption required because public, but no trust
establishment mechanism either

• Now we can generate shared secrets between each
router or sign data using public keys

• Public keys can then be used to authenticate DTLS or
TLS connections between participants

What about trust?

• Sharing public keys gives us authentication of who holds
the key, and encryption if we need it, but does not give us
trust (authorization).

• This at least lets us identify a bad actor that’s harming the
network and remove it, but it can always generate a new
identity.

• We need a way to establish trust for devices that we
authenticate with these keys

How might we establish
trust?

• Print a key fingerprint on each device, have devices display
their fingerprint in the UI along with their public key, have
sysadmin compare printed fingerprint to UI display

• Hook devices together with wires (only works for devices
with ethernet ports), push a button, and do trust
establishment based on security of link plus user signal

• Leap-of-faith over WiFi based on user signal (assume that
nobody bad is eavesdropping or MiTMing).

• Etc. We plan to have another brainstorming session in
Singapore (IETF 100).

Who is the sysadmin?
• Did I mention that the operator of this network has no idea

what authentication and authorization are? And that the
network is supposed to self-configure and self-manage?

• This makes establishing trust really hard

• Best current theory is that a web app running on user’s
phone with access to the camera could walk user through
trust establishment process and display basic network status

• Alternative: ISP manages home network as a service (but
how safe is this really)?

What about DNSSD trust
establishment?

• A replacement for mDNS.

• Allows services to be discovered on multiple links

• Assumes that most devices will not know about DNSSD,
and will just use mDNS

• Most service-providing devices (e.g., printers, set-top
boxes, TVs) will not participate in HNCP

• Therefore if trust is to be established, will be done using
DNS keys

DNSSD FCFS
• DNSSD service providers claim and protect names using DNS Update

(RFC2136) in combination with DNS keys and SIG(0).

• Service publishes name + key, signs updates using SIG(0) with that key

• If the name isn’t taken, it’s claimed and assigned that key; otherwise service
has to choose a new name

• Subsequent updates to that name must use the same key, or are rejected.

• Trust established as with mDNS: user chooses service, it works, they trust it.

• Better than mDNS, though: once trust is established, service can’t be
spoofed

• DNS keys can also be used for TLS/DTLS if service supports that.

HNR1

HNR2

HNR3

Discovery
Broker

DNS Update: me!

HNR1

HNR2

HNR3

Discovery
Broker

DNS Update: me!

HNR1

HNR2

HNR3

Discovery
Broker

Printer?

HNR1

HNR2

HNR3

Discovery
Broker

DNS: Printer?

HNR1

HNR2

HNR3

Discovery
Broker

DNS: Printer?

HNR1

HNR2

HNR3

Discovery
Broker

DNS: me!

HNR1

HNR2

HNR3

Discovery
Broker

DNS: me!

Web UI issues
• Most home routers have a web UI

• Web UI is over http, passwords in the clear

• Without a valid PKI cert, web UI will be seen as insecure by
browser when submitting passwords, producing a warning.

• Don’t want to train user to click through warnings.

• We need a cert the browser will accept

• There is no way to get PKI certs, and browsers currently do
not accept DNSSEC certs

Solutions
• Forbid web UI, replace with management API (which we

would then have to specify in detail).

• Get browser vendors to support DNSSEC/DANE/TLSA as
a way to secure TLS sessions

• Make it possible for home networks to get real domain
names automatically, then use Let’s Encrypt/ACME to get
PKI certs for browsers (chicken and egg problem,
though).

• ???

Home networks are
ephemeral

• Devices can be unplugged, factory reset, etc.

• Keys can be lost.

• Once trust is established, if devices remember keys, and
then those keys are lost, how do we re-establish trust?

• Phone app serves as key store?

• Master key and key revocation protocol?

• This is an open issue—the working group has not yet gamed
this out, but it needs to be addressed.

This is a really hard problem

• This is why some homenet people simply throw their
hands up and say "why bother?"

• If we did everything we’ve currently envisioned, we still
would have gaps.

• But if we do nothing, we’ll have nothing but gaps.

Current plan
• Put as many security building blocks in place as possible

• Try to clearly understand how to use them when network is
completely unmanaged, sort-of managed and professionally
managed

• Try to identify gaps and think about how to address them

• Try not to miss any opportunity to secure one of the protocols used
in homenet, but don’t think that encryption=security or
authentication=security without considering how trust is
established

• Remember that perfect is the enemy of good enough.

References
• Homenet Naming Architecture (draft-tldm-simple-homenet-naming-01)

• RFC 6762 (Multicast DNS)

• RFC 6763 (DNS Service Discovery)

• DNSSD Hybrid Proxy (draft-ietf-dnssd-hybrid)

• RFC 7788 (HNCP)

• Service Registration Protocol for DNS-Based Service Discovery 
(draft-sctl-service-registration-00)

• Babel (draft-ietf-homenet-babel-profile)

• Multiple Provisioning Domains (RFC 7556)

