


Current Case 2

- For every combination of every pair of NSFs:
1. Send Inbound SPIs to both NSFs
- Wait for response from both NSFs
- It 1 NSF is offline/busy, Controller resends or cleans up

2. Send outbound SPIs to both NSFs.
- Wait for responses

- It 1 NSF is offline/busy, Controller resends or cleans up
3. Send delete for old SPIs to both controllers
- Wait for responses



This works, but doesn’t scale.

- Creates 6 x N*2 messages for Controller and NSF per re-key

- Creates N2 state machines for controller
- Multi-tenancy makes this even worse by N*2

- Gets even more complicated when NSFs are offline?

- If NSF goes offline during re-key, Controller must clean up peer
NSF SAs

- It Controller goes offline, someone must clean up and
resynchronize re-keying.



This works, but doesn’t scale.

B >
m\

Peer B

©2018 Gsco and/or its affiliates. All rights reserved.



Other issues...

- Using multiple controllers becomes very complicated

- Controller knows ALL IPsec keys

- Case 1 and Case 2 need very different configuration models
- Case 1 follows typical RFC 4301
- Controller sends SPD and PAD

- NSF sends SAD to Controller with stats
- Case 2

- Controller sends SPD and SAD to NSF

- NSF sends SAD to Controller with stats



Controller IKE

- Creates N messages for Controller (actually < N)
- Creates 1 messages for each NSF
- No state machines on Controller, N state machines on NSF

- Makes multiple controllers very easy - Loose synchronization
- Controller knows NO [Psec keys

- Configuration model handles SPD, PAD, and SAD similar to case 1

- Robust to NSF/Controller going offline or losing connectivity
- No controller logic - Entire keying model is asynchronous!



Controller IKE

- Peer Initiates re-key
- Loose synch provides losslessness & flexibility

- Remaining sync uses existing ESP data pkts
- Re-key of A’s DH is completely async from re-key of

o [_conoter )

©2018 Cisco and/or its affiliates. All rights reserved.







