
I2RS working group S. Hares
Internet-Draft Huawei
Intended status: Standards Track A. Beirman
Expires: April 3, 2016 K. Watsen
 Juniper
 October 1, 2015

 I2RS protocol strawman
 draft-ietf-i2rs-protocol-strawman-00.txt

Abstract

 This document provides a strawman proposal for the I2RS protocol
 covering the ephemeral data store. It provides Yang ephemeral
 statement, netconf protocol extensions for the ephemeral data store,
 and RESTCONF protocol extensions for the protocol data store.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 3, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Hares, et al. Expires April 3, 2016 [Page 1]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Resolve before publishing draft 3
 3. Definitions Related to Ephemeral Configuration 5
 4. Definition of ephemeral datastore for NETCONF/RESTCONF . . . 6
 5. Simple Thermostat Model 9
 6. Yang changes . 12
 7. NETCONF protocol extensions for the ephemeral datastore . . . 14
 7.1. Overview . 14
 7.2. Dependencies . 14
 7.3. Capability identifier 14
 7.4. New Operations . 14
 7.4.1. Bulk-write . 14
 7.4.2. Bulk-Read . 15
 7.5. Modification to existing operations 15
 7.5.1. PUT changes . 15
 7.6. Interactions with Other Capabilities 15
 8. RESTCONF protocol extensions for the ephemeral datastore . . 15
 8.1. Overview . 15
 8.2. Dependencies . 15
 8.3. Capability identifier 16
 8.4. New Operations . 16
 8.4.1. Bulk-write . 16
 8.4.2. Bulk-Read . 16
 8.5. Modification to existing operations 16
 8.5.1. PUT changes . 16
 8.6. Interactions with Other Capabilities 16
 9. IANA Considerations . 16
 10. Security Considerations 16
 11. Acknowledgements . 16
 12. References . 17
 12.1. Normative References: 17
 12.2. Informative References 18
 Authors’ Addresses . 18

1. Introduction

 This documents is a strawman for the I2RS Protocol from early I2RS
 design team discusses. It focuses on the protocol extensions for
 ephemeral data store.

 This draft provides suggests the following additions to support the
 I2RS ephemeral state:

Hares, et al. Expires April 3, 2016 [Page 2]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 o Yang ephemeral statement,

 o NETCONF ([RFC6241]) protocol extensions for the ephemeral data
 store,

 o RESTCONF ([I-D.ietf-netconf-restconf]) protocol extensions for the
 ephemeral data store

 draft-hares-i2rs-protocol-strawman-examples provides provides
 examples of this strawman protocol use for I2RS. This draft uses a
 simple thermostat model to illustrate commands.

 This draft is input to a NETCONF review and design team.

2. Resolve before publishing draft

 1. (dean)Where will be the ephemeral datastore defined? I’m hearing
 discussions about ephemeral dat store is several places and it
 doesn’t sound people have a common understanding of it. As side
 commend, I agree what you wrote down as high level layout on it.

 * (Andy)There does seem to be some overlap right now with
 opstate, wrt/ defining new datastores. To me, a datastore is
 just a way to refer to "data in the same state" within a
 protocol. To others, it is seen as a more concrete
 implementation requirement. The IETF will have to work this
 out.

 2. (dean)What edits are allowed in the ephemeral data store. Should
 those be syntactically correct or syntacticly and semantically?

 * (Andy)This is the $64 question. Jeff has described at least
 one scenario where priority between 2 clients does not clearly
 solve edit contention. (Forget all the details but involves
 an entry that cannot be deleted because the result would leave
 an unresolved reference somewhere else in the data). There
 are 3 possible outcomes for a valid edit:

 1. no collisions; must be accepted

 2. partial overlap with better priority data

 3. complete overlap with better priority data

 Depending on stop-on-error or continue-on-error (2) will be
 accepted or not. This is where Jan (and I) start to worry
 about the client trying to be too clever, but Joel thinks a
 client could recover and deal with outcome (2).

Hares, et al. Expires April 3, 2016 [Page 3]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 * (andy) Clearly the data has to pass "field validation" (pass
 the typedef checks; can’t send int32=fred)

 * Validation slows things down a lot, so datastore validation
 needs to be considered carefully. This is where I think
 routing expertise will help decide how much validation can
 really be skipped for a particular use-case.

 3. (Andy)Here is an example of a routing use-case that is a
 challenge.

 * How is client priority used to make sure that a lessor client
 cannot insert a route with a shorter prefix into a RIB than an
 existing entry by a higher priority client?

 * This goes back to early questions that were never answered,
 such as "what exactly is an overlap/edit collision". It seems
 that some data models have to be written with client priority
 support in them, rather than something than can always be
 resolved by comparing exact instances in 2 client panes.

 * Examples of 2 clients trying to insert routes into the same
 RIB would be useful for the draft. I think we need that to
 explain all the things we mean by "overlap" when evaluating
 client panes.

 4. (Anu)On priority: So the priority maximum will be same as the
 max-clients , if we are assigning unique priorities from 1 - max-
 clilents. (Eg , if max clients is 100 (leaf max clients , range
 1 .. max) then priority range is also from 1 - max) So the leaf
 max-clients { .. range 1- 32 } represents priority information
 also , so it can be max-clients or max-priorities ??

 1. (Andy)The term ’max’ in YANG resolves to 4B-1 in this range,
 not 32. Actually, the text I sent allows for multiple
 clients to all have the default priority which is not good --
 if client-id is needed to resolve collisions then there is no
 point to requiring a unique priority per client.

 2. (Andy)The priority is not required to be densely numbered.
 Whether there are 1 pane per client or 1 pane per priority or
 1 giant blob full of everything, the code will be the same.
 The goal of "unique priority" is to require that only
 priority be saved in the meta-data for the ephemeral
 datastore. Without that, client-id and priority must be
 saved (per data node).

Hares, et al. Expires April 3, 2016 [Page 4]

Internet-Draft I2RS Ephemeral State Requirements October 2015

3. Definitions Related to Ephemeral Configuration

 Currently the configuration systems managed by NETCONF ([RFC6241]) or
 RESTCONF ([I-D.ietf-netconf-restconf]) has three types of
 configuration: candidate, running, and startup running under the
 config=true flag.

 o The candidate receives configuration changes from NETCONF/
 RESTCONF.

 o The running configuration is the configuration currently operating
 on a devices

 o The start-up configuration is the configuration that survives a
 reboot.

 The config=false flag has operational data which exists alongside the
 config=true data. However, at this point there is no datastored
 defined for configuration false.

 operational

 :Candidate : --> : running : --> :start-up :

 config true

 config false
 ===============
 | operational |
 | data |
 ================

 Figure 1

 In reality, the running configuration becomes the intended
 configuration that is intended to be loaded into a device. The
 loading process of the intended configuation into a devices compares
 it against the actual devices and creates the actual configuration
 loaded into a box.

 Some people denote the actual configuration as applied configuration.
 The [I-D.openconfig-netmod-opstate] denotes the actual configuration
 as derived state. This document will use the term actual
 configuration.

Hares, et al. Expires April 3, 2016 [Page 5]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 :Candidate : --> : running : --> :start-up :

 =============
 | Intended |
 | config |
 =============
 config true

 config false
 =============
 | Actual |
 | config |
 =============

 | operational |
 | data |
 |______________|

 Figure 2

 Recently the [I-D.openconfig-netmod-opstate] has proposed that
 intended configuration, actual configuration, and the traditional
 type of operational data included as operational state. Operational
 data may include:

 o derived state (e.g. negotiated bgp hold timer)

 o operational state for counters or statistics (interface counters)

 Again, this document will use the definitions above to discuss
 ephemeral state until the NETCONF WG agrees upon the changes to the
 state diagrams.

4. Definition of ephemeral datastore for NETCONF/RESTCONF

 This section describes the properties of the ephemeral datastore.
 This approach to the ephemeral datastore is a panes-of-glass model.

 The ephemeral data store has the following qualities:

 1. The ephemeral datastore is a datastore holds configuration that
 is intended to not survive a reboot.

 2. The ephemeral datastore is never locked.

 3. The ephemeral datastore treated as N client panes where

Hares, et al. Expires April 3, 2016 [Page 6]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 * the netconf/restconf server picks how many clients it supports

 * multi-head support is optional since max-clients allowed to be
 1

 4. Each client has a unique priority (see figure 3 for example yang
 statements)

 * If a client is not present in the i2rs-client list, then the
 worst priority value is assigned.

 * The best possible priority needs to be reserved for the
 system, or the protocol has to make a special case of system-
 set data

 5. Each client writes into its own pane so there is no conflict
 within a pane. The implementation combines the panes into the
 appropriate image.

 * The difference between panes of glass is what the server
 retains from a partial or failed edit (due to conflicts in the
 panes (?editor))

 * It should be a valid operation to save nothing or to save all
 information (caching) within a pane of glass

 6. A Partial operation is one where a subset of the written data is
 not applied because of better priority for that node. A partial
 operation is only allowed if the error-option is stop-on-error or
 continue-on-error.

 * stop-on-error - means that the configuration process stops
 when a write to the configuration detects an error due to
 write conflict.

 * continue-on-error - means the configuration process continues
 when a write to the configuration detects an error due to
 write process, and error reports are transmitted back to the
 client writing the error.

 * all-or-nothing - means that all of the configuration process
 is correctly applied or no configuration process is applied.

 * NETCONF stop-on-error and continue-on-error are not going to
 work. There is no mandated processing order for edits. For
 the stop-on-error and the continue-on-error process to work,
 the I2RS protocol extensions to NETCONF will have to force
 some processing order in order to support partial edits.

Hares, et al. Expires April 3, 2016 [Page 7]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 * NETCONF has no current mechanism for reporting which edits
 were accepted and which edits were reject for partial
 operations. The I2RS protocol extensions will have to provide
 new error handling to the response data.

 * These features were removed from NETCONF (RFC 6241) because it
 was too complicated, and no company had implemented these
 features.

 * Interoperability issues must be considered in all three cases:
 a) all-or-nothing, b) stop-on-error, and c) continue-on-error.

 7. caching is optional and and a server may retain the pain for each
 client.

 * If caching is not supported then the pane-of-glass never
 contains unaccepted data. Therefore, the server will return
 an error and will not retain the edit that caused the error.

 * If caching is supported, then the data is retained in the
 pane-of-glass, Therefore, if the higher priority data is
 removed then the lower priority data can be added.
 Notifications will be provided when this occurs. (?Editor)

 container i2rs-clients {
 leaf max-clients {
 config false;
 mandatory true;
 type uint32 {
 range "1 .. max";
 }
 }
 list i2rs-client {
 key name;
 unique priority;
 leaf name { ... }
 leaf priority { ... }
 }
 }
 Figure 3

 The ephemeral data store

Hares, et al. Expires April 3, 2016 [Page 8]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 :Candidate : --> : running : --> :start-up :

 ephemeral datastore

 . ’’’’’’’’’’’ . ===========
 . ’ephemeral’ .-->|Intented |
 . ’ config ’ . |Config |
 . ’’’’’’’’’’’ . ===========
 config true . .
 -------------.-------------.----------------
 config false . ’’’’’’’’’’’ .
 . ’ephemeral’ . ===========
 . ’ actual ’ .-->| Actual |
 . ’ config ’ . | config |
 . ’’’’’’’’’’’ . ==========
 ^
 ______________ |
 | operational | |
 | data |--------|
 |______________|

 Figure 4

5. Simple Thermostat Model

 In this discussion of ephemeral configuration, this draft utilizes a
 simple thermostat model with the yang configuration found in figure
 4.

 module thermostat {
 ..
 leaf desired-temp {
 type int32;
 units "degrees Celsius";
 description "The desired temperature";
 }

 leaf actual-temp {
 type int32;
 config false;
 units "degrees Celsius";
 description "The measured temperature";
 }
 }

 Figure 4 - Simple thermostat model yabng

Hares, et al. Expires April 3, 2016 [Page 9]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 Figure 5 shows the diagram of the configuration state with the Simple
 thermostat model being attached to by an I2RS scheduler client
 receiving query information regarding intended configuration and
 actual configuration. Scheduler has a schedule set of temperatures
 to put in the thermostat.

 :Candidate : --> : Desired temp:-->:start-up :

 |
 V
 ============ ===========
 | Intended |----| I2RS |
 | config | |scheduler|
 | | | client |
 ============ ===========
 config true ^
 ------------------------------- |
 config false |
 ============= |
 | Actual |--------|
 | config |
 =============
 ^
 |
 |

 | actual temp |

 Figure 5 - Scheduler client only

 Figure 6 shows two I2RS clients talking to this model: scheduler and
 hold-temp. Scheduler has a schedule set of temperatures to put in
 the thermostat. Hold-temp holds the temperature at the same value.
 The hold-temp I2RS client has a higher priority than the scheduler
 client.

Hares, et al. Expires April 3, 2016 [Page 10]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 :Candidate :---: Desired temp : -- :start-up :

 |
 | =============
 | |I2rs Client|
 | |scheduler |
 V / ============
 /
 ephemeral . ’’’’’’’’’’’’’’’/. ==============
 datastore . ’desired-temp’---- |I2RS Client |
 . ’’’’’’’’’|’’’’ . | hold temp |
 . | . ==============
 . | . ============
 . |---------| intended |
 . . | config |
 . . ============
 config true . .
 -------------.-----------------.------
 config false . .

 =============
 | Actual |
 | config |
 =============
 ^
 |
 |

 | actual temp |

 Figure 6 - Two I2RS clients

 Figure 7 shows a diagnostic test button within the thermostat system
 which tests the overheating response by altering the value of actual-
 temp. (This manual button is similar in concept to a manual button
 that puts an routing interface online or offline.)

Hares, et al. Expires April 3, 2016 [Page 11]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 :Candidate :---: Desired temp : -- :start-up :

 |
 | =============
 | |I2rs Client|
 | |scheduler |
 V / ============
 /
 ephemeral . ’’’’’’’’’’’’’’’/. ==============
 datastore . ’desired-temp’---- |I2RS Client |
 . ’’’’’’’’’|’’’’ . | hold temp |
 . | . ==============
 . | . ============
 . |---------| intended |
 . . | config |
 . . ============
 config true . .
 -------------.----------------.----------------
 . ’’’’’’’’’’’’’’ . ============
 ephemeral . ’actual-temp ’------| actual |
 . ’’’’’’|’’’’’’\’. | config |
 . | \ ============
 config false|........\
 \ ============
 ---------------- --| Diag-temp|
 | actual temp | ============

 Figure 7 - Two I2RS clients

6. Yang changes

 Yang needs to add a key word ephemeral that signal the ephemeral
 datatstore for items in the config true or the config false state.

Hares, et al. Expires April 3, 2016 [Page 12]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 module thermostat {
 ..
 ! Do we need an ephemeral flag here for consistency (??sue)
 !
 leaf desired-temp {
 type int32;
 units "degrees Celsius";
 description "The desired temperature";
 ephemeral true;
 }

 leaf actual-temp {
 type int32;
 config false;
 ephemeral true;
 units "degrees Celsius";
 description "The measured temperature";
 }
 }

 Figure 8 - Simple Thermostat Yang with ephemeral

 Figure 6 shows the thermostat model has emphemeral variable desired-
 temp in the running configuration and the ephemeral data store. The
 RESTCONF way of addressings is below:

 RESTCONF running data store

 PUT /resconf/data/thermostat:desired-temp
 {"desired-temp":18}

 RESTCONF ephemeral datastore

 PUT /restconf/data/thermostat:desired-temp?datastore=ephemeral
 {"desired-temp":19 }

 Figure 7 shows the thermostat model with an addition of the actual-
 temp in the ephemeral operational store that would be stored in the
 actual operational status. The RESTCONF syntax is below:

 RESTCONF Ephemeral Datastore Edit of Config=FALSE
 PUT /restconf/data/thermostat:actual-temp?datastore=ephemeral
 {"actual-temp":72}

Hares, et al. Expires April 3, 2016 [Page 13]

Internet-Draft I2RS Ephemeral State Requirements October 2015

7. NETCONF protocol extensions for the ephemeral datastore

 capability-name: ephemeral-datastore

7.1. Overview

 This capability defines the NETCONF protocol extensions for the
 ephemeral state. The ephemeral state has the following features:

 o the ephemeral datastore is a datastore holds configuration that is
 intended to not survive a reboot.

 o The ephemeral datastore is never locked.

 o Each client has a unique priority.

 o Each client writes into its own pane so there is no conflict
 within a pane. The implementation combines the panes into the
 appropriate image.

 o A Partial operation is one where a subset of the written data is
 not applied because of better priority for that node. A partial
 operation is only allowed if the error-option is stop-on-error or
 continue-on-error.

 o Caching is optional and and a server may retain the pain for each
 client.

7.2. Dependencies

 The Yang data modules must be flag with the ephemeral data store.
 The Yang modules must support the notification of write-conflicts.

7.3. Capability identifier

 The ephemeral-datastore capability is identified by the following
 capability string: (capability uri)

7.4. New Operations

7.4.1. Bulk-write

 The bulk-write goes here.

Hares, et al. Expires April 3, 2016 [Page 14]

Internet-Draft I2RS Ephemeral State Requirements October 2015

7.4.2. Bulk-Read

 The bulk-read goes here.

7.5. Modification to existing operations

7.5.1. PUT changes

 The phrase "?datastore=ephemeral" following an element will specify
 the ephemeral data store.

7.6. Interactions with Other Capabilities

 TBD

8. RESTCONF protocol extensions for the ephemeral datastore

 capability-name: ephemeral-datastore

8.1. Overview

 This capability defines the REST CONF protocol extensions for the
 ephemeral state. The ephemeral state has the following features:

 o the ephemeral datastore is a datastore holds configuration that is
 intended to not survive a reboot.

 o The ephemeral datastore is never locked.

 o Each client has a unique priority.

 o Each client writes into its own pane so there is no conflict
 within a pane. The implementation combines the panes into the
 appropriate image.

 o A Partial operation is one where a subset of the written data is
 not applied because of better priority for that node. A partial
 operation is only allowed if the error-option is stop-on-error or
 continue-on-error.

 o Caching is optional and and a server may retain the pain for each
 client.

8.2. Dependencies

 The Yang data modules must be flag with the ephemeral data store.
 The Yang modules must support the notification of write-conflicts.

Hares, et al. Expires April 3, 2016 [Page 15]

Internet-Draft I2RS Ephemeral State Requirements October 2015

8.3. Capability identifier

 The ephemeral-datastore capability is identified by the following
 capability string: (capability uri)

8.4. New Operations

8.4.1. Bulk-write

 The bulk-write goes here.

8.4.2. Bulk-Read

 The bulk-read goes here.

8.5. Modification to existing operations

8.5.1. PUT changes

 The phrase "?datastore=ephemeral" following an element will specify
 the ephemeral data store.

8.6. Interactions with Other Capabilities

 TBD

9. IANA Considerations

 TBD

10. Security Considerations

 TBD

11. Acknowledgements

 This document is an attempt to distill lengthy conversations on the
 I2RS proto design team from August

 Here’s the list of the I2RS protocol design team members

 o Alia Atlas

 o Andy Bierman

 o Alex Clemm

 o Eric Voit

Hares, et al. Expires April 3, 2016 [Page 16]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 o Kent Watsen

 o Jeff Haas

 o Keyur Patel

 o Hari

 o Dean Bogdanavich

 o Anu Nair

 o Juergen Schoenwaelder

 o Kent Watsen

12. References

12.1. Normative References:

 [I-D.hares-i2rs-auth-trans]
 Hares, S., Migault, D., and J. Halpern, "I2RS Security
 Related Requirements", draft-hares-i2rs-auth-trans-05
 (work in progress), August 2015.

 [I-D.ietf-i2rs-architecture]
 Atlas, A., Halpern, J., Hares, S., Ward, D., and T.
 Nadeau, "An Architecture for the Interface to the Routing
 System", draft-ietf-i2rs-architecture-09 (work in
 progress), March 2015.

 [I-D.ietf-i2rs-pub-sub-requirements]
 Voit, E., Clemm, A., and A. Prieto, "Requirements for
 Subscription to YANG Datastores", draft-ietf-i2rs-pub-sub-
 requirements-02 (work in progress), March 2015.

 [I-D.ietf-i2rs-rib-info-model]
 Bahadur, N., Kini, S., and J. Medved, "Routing Information
 Base Info Model", draft-ietf-i2rs-rib-info-model-07 (work
 in progress), September 2015.

 [I-D.ietf-i2rs-traceability]
 Clarke, J., Salgueiro, G., and C. Pignataro, "Interface to
 the Routing System (I2RS) Traceability: Framework and
 Information Model", draft-ietf-i2rs-traceability-03 (work
 in progress), May 2015.

Hares, et al. Expires April 3, 2016 [Page 17]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 [I-D.ietf-netmod-yang-metadata]
 Lhotka, L., "Defining and Using Metadata with YANG",
 draft-ietf-netmod-yang-metadata-02 (work in progress),
 September 2015.

 [I-D.openconfig-netmod-opstate]
 Shakir, R., Shaikh, A., and M. Hines, "Consistent Modeling
 of Operational State Data in YANG", draft-openconfig-
 netmod-opstate-01 (work in progress), July 2015.

12.2. Informative References

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf-07 (work in
 progress), July 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

Authors’ Addresses

 Susan Hares
 Huawei
 Saline
 US

 Email: shares@ndzh.com

Hares, et al. Expires April 3, 2016 [Page 18]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 Andy Bierman
 Juniper

 Kent Watsen
 Juniper

 Email: kwatsen@juniper.net

Hares, et al. Expires April 3, 2016 [Page 19]

