12RS RIB Route Example

I2RS RIB Example

. Attempt to match Andy slides with 12RS RIB model
(8/31/2015)

. Boiled down to IPv4 route

— 128.2/16 with nexthop 1 — added by netconf config
— 128.2/16 with nexthop 2 — added by I12RS RIB

- DDOS attack causes you to overwrite NETCONF config
with I12RS RIB route

Current Datastores

candidate ——— running ———— startup

config true;

config false; All operational data exists

alongside config=true but
there is no datastore defined

_ for config=false data nodes
operational

data

Current Datastores (Ext. 1)

candidate ———— running ——— startup

config true; _ N

Conceptual intended and actual
values are determined by the
server as an implementation
detail

operational
data

Route

module i2rs-rib {
-c.c;ntainer routing-instance {
list rib-list {
mlist route-list {

key “route-index”;
uses route;

}

} operational

} data

Extensions

grouping route {
description
“The common attribute used for all routes;”
uses route-prefix;
container nexthop {
uses nexthop;

}

container route-statistics {
leaf route-state {
type route-state-def;
config false; /* operational state */
¥
leaf route-installed state {
type route-installed-state def;
config false;
by
leaf route-reason {
type route-reason-def;
config false;

¥
}

container router-attributes {
uses router-attributes;
}
container route-vendor-attributes
uses route-vendor attributes;

}

Route

Index for route direct
reference without
prefix match; Main
key.

Type: ipv4, ipv6,
mpls, mac,
interface

Type: v4 prefix
match

Index for nexthop
direct index without
match

IPv4 prefix

module i2rs-rib {
container routing-instance { ...

list rib-list {
list route-list {

key “route-index’;
leaf route-index {
type uint64;
mandatory true;

}

leaf route-type {
type route-type-def;
mandatory true;

}

Container match {
choice rib-route-type {....
leaf destination-ip-v4-prefix {
type inet:ipv4-prefix;
mandatory true;
¥

by
}

leaf nexthop-id {
type uint32;
mandatory true;
1

ieaf next-hopo-ipv4-address {
type inet:ipv4-prefix;
mandatory true

}

container route-statistics {
leaf route-installed state {

type route-installed-state def;
config false;

}

Defined as:
Installed, uninstalled

Thermostat Model Equivalent

Route 128.1/16

config false;

ety
e

Route 128.1/16
nexthop 1
Route-installed-state Installed

Route + Ephemeral Route

config true;

Route 128.2/16
nexthop id 1

running datastore Add IPS

Route 128.2/16
nexthop id 2 ~intendedconfig

config false;

ephemeral datastore

Route 128.2/16 is not deleted

by add IPS Route
the desired config is
over-ridden

Route 128.1/16 nexthop 1
Route-installed-state Installed

Route + Ephemeral Route

config true;

Route 128.2/16
nexthop id 1

running datastore Add IPS

/ Route
Route 128.2/16
nexthop id 2 - intendedconfig

config false;

Diagnostics test the DDOS
response by altering the
Route installed in RIB
Could keep the first

Route as “not installed”

If implementation desired

Route 128.2/16
nexthop id 2 DDOS

ephemeral datastore Attack

Route 128.1/16 nexthop 2
Route-installed-state Installed
Route 128.1/16 nexthop 1
Route-installed-state Not installed

RESTCONF Example

RESTCONF Running Datastore Edit

PUT /restconf/data/i2rs-rib/instance=1/rib=1Pv4/route=128.1/next-hop
{ “next-hop”:1}

RESTCONF Ephemeral Datastore Edit of config=true

PUT /restconf/data/i2rs-rib/instance=1/rib=I1Pv4/route=128.1/next-
hop?datastore=ephemeral

{ “next-hop”:2 }

RESTCONF Ephemeral Datastore Edit of config=false

PUT /restconf/data/i2rs-rib/instance=1/rib=1Pv4/route=128.1/next-
hop=2/route-installed-state/datastore=ephemeral

{ “route-installed-state”: Installed } B

|ssues

Did I replicate Andy’s example? Did | get the RESTCONF syntax right?
config=false should have some reflection on the true state of the route in the FIB

— Having installed and uninstalled route makes sense for DDOS case, but it blow up the
RIB size by those number

-~ Implementations could immediately clean uninstalled routes out.

Does Andy’s example mean that I2RS RIB and the Routing RIB need to be aligned?
— Right now the two are in the same general area, but not aligned.
— Could do this if it helped make deployments easier.

Not sure where ephemeral false would go?

Can another client query for a list of what routes come from the I12RS RIB for the
IPv4 RIB?

11

Summary

. Both config=true and config=false nodes can be
edited In the ephemeral datastore

— this datastore overrides normal intended config and
actual config (implementation details)

. Edit and validation rules for ephemeral datastore can
be different than for the running datastore

— Actual rules TBD but cannot reference data that is “less
stable” than the current context

- Want to minimize performance overhead; maybe even
provide mode where YANG validation rules are skipped
1

2

Backup on creating the shorten route

FROM I2RS YANG MODULE TO
SHORT ROUTE

module 12rs-rib {
container routing-instance {
list rib-list {

list route-list {
key “route-index”;
uses route;

}
}
}

grouping route {
description
“The common attribute
used for all routes;”
uses route-prefix;
container nexthop {
uses nexthop;

}
-

grouping route-prefix {
description “common
attributes use for all routes”;
leaf route-index {
type uint64;
mandatory true;
¥
leaf route-type {
type route-type-def;
mandatory true;
¥
container match {
choice rib-route-type {
... 1pv4
... Ipv6
... mpls
.. mac

grouping nexthop {

}

leaf nexthop-id {
mandatory true;
type uint32;
}
choice next-hop-type {
case next-hop base {
list nexthop-chain {
key “nexthop-chain-id”;
uses nexthop-chain-member;
}
}

case

ipv4 {

description
“match on destination IP

address in header”;
container ipv4 {
leaf ipv4-route-type {
type ip-route-type def;
mandatory true;
¥
choice ip-route-type {
case destination-ipv4-address {
leaf destination-ipv4-prefix {
type inet:ipv4-prefix
mandatory true;

}

case destination-source-ipv4-address

ks 14

module i2rs-rib {
container routing-instance {
list rib-list {

list route-list {
key “route-index”;

leaf route-index {

type uint64; IPv4
mandatory true; Route
}

leaf route-type {
type route-type-def;
mandatory true;

}

leaf destination-ip-v4-prefix {

type inet:ipv4-prefix;
mandatory true;

¥

left nexthop-id {
type uint32;
mandatory true;

¥

leaf next-hop-ipv4-address {
type inet:ipv4-address
mandatory true

}

Route info

grouping route {
description

“The common attribute
used for all routes;”

uses route-prefix;
container nexthop {
uses nexthop;

¥

,
grouping route-prefix {
description “common

grouping nexthop {
leaf nexthop-id {
mandatory true;
type uint32;
}
choice next-hop-type {
case next-hop base {
list nexthop-chain {
key “nexthop-chain-id”;
uses nexthop-chain-member;
}
}
}

attributes use for all routes”;
leaf route-index {
type uint64;
mandatory true;
}
leaf route-type {
type route-type-def;
mandatory true;
¥
container match {
choice route-type {
... ipv4 —
... Ipv6
... mpls
.. mac

case ipv4 {
description
“match on destination IP
address in header™;
container ipv4 {
leaf ipv4-route-type {
type ip-route-type def;
mandatory true;
}
choice ip-route-type {
case destination-ipv4-address {
leaf destination-ipv4-prefix {
type inet:ipv4-prefix
mandatory true;
}
case destination-source-ipv4-
address
..... 15

