
I2RS working group S. Hares
Internet-Draft Huawei
Intended status: Standards Track A. Beirman
Expires: April 19, 2016 YumaWorks
 K. Watsen
 Juniper
 October 17, 2015

 I2RS protocol strawman
 draft-hares-dt-i2rs-protocol-strawman-00.txt

Abstract

 This document provides a strawman proposal for the I2RS protocol
 covering the ephemeral data store. It provides Yang ephemeral
 statement, netconf protocol extensions for the ephemeral data store,
 and RESTCONF protocol extensions for the protocol data store.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 19, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Hares, et al. Expires April 19, 2016 [Page 1]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Resolve before publishing draft 4
 3. Definitions Related to Ephemeral Configuration 4
 4. Definition of ephemeral datastore for NETCONF/RESTCONF . . . 6
 5. Error handling . 8
 5.1. syntax validation . 8
 5.2. Referential validation 9
 5.3. Grouping and Error handling 9
 5.3.1. NETCONF Support of Partial Writes 9
 5.3.2. RESTCONF Support of Partial Writes 10
 5.3.3. Initial Support of Parital Writes 10
 5.4. priority preemption 10
 6. Yang Library Use by Ephemeral 10
 7. transport protocol . 11
 7.1. Secure Protocols . 11
 7.2. Insecure Protocol . 11
 8. Simple Thermostat Model 12
 9. Yang changes . 14
 10. NETCONF protocol extensions for the ephemeral datastore . . . 16
 10.1. Overview . 16
 10.2. Dependencies . 17
 10.3. Capability identifier 17
 10.4. New Operations . 17
 10.4.1. link-ephemeral 18
 10.4.2. Bulk-write . 18
 10.4.3. Bulk-Read . 18
 10.5. Modification to existing operations 18
 10.5.1. <get-config> . 18
 10.5.2. <edit-config> 19
 10.5.3. <copy-config> 20
 10.5.4. <delete-config> 20
 10.5.5. <lock> and <unlock> 20
 10.5.6. <get> . 20
 10.5.7. <close-session> and <kill-session> 20
 10.6. Interactions with Other Capabilities 20
 10.6.1. writable-running and candidate datastore 20
 10.6.2. confirmed commmit 21
 10.6.3. rollback-on-error 21
 10.6.4. validate . 21
 10.6.5. Distinct Startup Capability 21
 10.6.6. URL capability and XPATH capability 21
 11. RESTCONF protocol extensions for the ephemeral datastore . . 21
 11.1. Overview . 21

Hares, et al. Expires April 19, 2016 [Page 2]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 11.2. Dependencies . 22
 11.3. Capability identifier 22
 11.4. New Operations . 22
 11.4.1. Bulk-write . 22
 11.4.2. Bulk-Read . 22
 11.5. modification to data resources 22
 11.6. Modification to existing operations 22
 11.6.1. OPTIONS changes 23
 11.6.2. HEAD changes . 23
 11.6.3. GET changes . 23
 11.6.4. POST changes . 23
 11.6.5. PUT changes . 23
 11.6.6. PATCH changes 23
 11.6.7. DELETE changes 23
 11.6.8. Query Parameters 24
 11.7. Interactions with Other Capabilities 24
 12. IANA Considerations . 24
 13. Security Considerations 24
 14. Acknowledgements . 24
 15. References . 25
 15.1. Normative References: 25
 15.2. Informative References 26
 Authors’ Addresses . 27

1. Introduction

 This documents is a strawman for the I2RS Protocol from early I2RS
 design team discusses. It focuses on the protocol extensions for
 ephemeral data store.

 This draft provides suggests the following additions to support the
 I2RS ephemeral state:

 o Yang ephemeral statement,

 o NETCONF ([RFC6241]) protocol extensions for the ephemeral data
 store,

 o RESTCONF ([I-D.ietf-netconf-restconf]) protocol extensions for the
 ephemeral data store

 draft-hares-i2rs-protocol-strawman-examples provides provides
 examples of this strawman protocol use for I2RS. This draft uses a
 simple thermostat model to illustrate commands.

 This draft is input to a NETCONF review and design team.

Hares, et al. Expires April 19, 2016 [Page 3]

Internet-Draft I2RS Ephemeral State Requirements October 2015

2. Resolve before publishing draft

 1. (dean)What edits are allowed in the ephemeral data store. Should
 those be syntactically correct or syntacticly and semantically?

 2. Validation slows things down a lot, so datastore validation needs
 to be considered carefully. This is where I think routing
 expertise will help decide how much validation can really be
 skipped for a particular use-case.

 3. (Anu)On priority: So the priority maximum will be same as the
 max-clients , if we are assigning unique priorities from 1 - max-
 clilents. (Eg , if max clients is 100 (leaf max clients , range
 1 .. max) then priority range is also from 1 - max) So the leaf
 max-clients { .. range 1- 32 } represents priority information
 also , so it can be max-clients or max-priorities ??

 1. (Andy)The term ’max’ in YANG resolves to 4B-1 in this range,
 not 32. Actually, the text I sent allows for multiple
 clients to all have the default priority which is not good --
 if client-id is needed to resolve collisions then there is no
 point to requiring a unique priority per client.

 2. (Andy)The priority is not required to be densely numbered.
 Whether there are 1 pane per client or 1 pane per priority or
 1 giant blob full of everything, the code will be the same.
 The goal of "unique priority" is to require that only
 priority be saved in the meta-data for the ephemeral
 datastore. Without that, client-id and priority must be
 saved (per data node).

3. Definitions Related to Ephemeral Configuration

 Currently the configuration systems managed by NETCONF ([RFC6241]) or
 RESTCONF ([I-D.ietf-netconf-restconf]) has three types of
 configuration: candidate, running, and startup running under the
 config=true flag.

 o The candidate receives configuration changes from NETCONF/
 RESTCONF.

 o The running configuration is the configuration currently operating
 on a devices

 o The start-up configuration is the configuration that survives a
 reboot.

Hares, et al. Expires April 19, 2016 [Page 4]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 The config=false flag has operational data which exists alongside the
 config=true data. However, at this point there is no datastored
 defined for configuration false.

 :Candidate : --> : running : --> :start-up :

 config true

 config false
 ===============
 | operational |
 | data |
 ================

 Figure 1

 In reality, the running configuration becomes the intended
 configuration that is intended to be loaded into a device. The
 loading process of the intended configuation into a devices compares
 it against the actual devices and creates the actual configuration
 loaded into a box.

 Some people denote the actual configuration as applied configuration.
 The [I-D.openconfig-netmod-opstate] denotes the actual configuration
 as derived state. This document will use the term actual
 configuration.

Hares, et al. Expires April 19, 2016 [Page 5]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 :Candidate : --> : running : --> :start-up :

 =============
 | Intended |
 | config |
 =============
 config true

 config false
 =============
 | Actual |
 | config |
 =============

 | operational |
 | data |
 |______________|

 Figure 2

 Recently the [I-D.openconfig-netmod-opstate] has proposed that
 intended configuration, actual configuration, and the traditional
 type of operational data included as operational state. Operational
 data may include:

 o derived state (e.g. negotiated bgp hold timer)

 o operational state for counters or statistics (interface counters)

 Again, this document will use the definitions above to discuss
 ephemeral state until the NETCONF WG agrees upon the changes to the
 state diagrams.

4. Definition of ephemeral datastore for NETCONF/RESTCONF

 This section describes the properties of the ephemeral datastore.
 The ephemeral datastore is not unique to I2RS. This approach to the
 ephemeral datastore is a panes-of-glass model. This definition of
 I2RS does not support caching in the I2RS Agents. Future I2RS work
 may reconsidered supporting caching.

 The ephemeral data store has the following qualities:

 1. Ephemeral state is not unique to I2RS work.

Hares, et al. Expires April 19, 2016 [Page 6]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 2. The ephemeral datastore is a datastore holds ephemeral
 configuration information that is intended to not survive a
 reboot. Configuration information is defined as "config=true
 nodes".

 3. Since Ephemeral is just about data not presisting over a reboot,
 then in theory every nodes in a yang data model could be
 ephemeral. The importance of tagging an "ephemeral node" is for
 conformance checking. Therefore, ephemeral nodes needs to be
 signalled in the conformance portions of the NETCONF and RESTCONF
 work. Conformance is signalled in the following ways:

 * The conformance portion of NETCONF ([RFC6241]) is currently
 signalled in the <hello>.

 * Yang 1.1 and RESTCONF uses the module library
 ([I-D.ietf-netconf-yang-library])

 * NETCONF may use the module library in the future.

 4. The ephemeral datastore is never locked.

 5. The ephemeral datastore is one pane of glass that overrides the
 running data store.

 6. Ephemeral data can occur in three ways:

 * protocol yang module with nodes that can be either non-
 ephemeral and ephemerally written,

 * protocol yang modules with added nodes which can only be
 ephemeral

 * protocol independent yang module which designed to be only
 ephemeral such as I2RS RIB, I2RS Topology models, and I2RS FB-
 RIB.

 However, ephemeral data nodes cannot have non-ephemeral data
 nodes within the subtree. Ephemeral sub-modules cannot have non-
 ephemeral data nodes wihin the module. Ephemeral modules cannot
 have non-ephemeral sub-modules or nodes within the module.

 7. Ephemeral nodes will be denoted by an "ephemeral config statement
 in the yang protocol at the node level and at the module level.

 8. Ephemeral provides two additional error handling features:

Hares, et al. Expires April 19, 2016 [Page 7]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 1. Ephemeral data store allows for reduced error handling that
 removes the requirements for leafref checking, MUST clauses,
 and instance identifier.

 2. Ephemeral data store allows for priority preemption of the
 write operation. Priority preemption means each I2RS client
 of the ephemeral I2RS agent (netconf server) is associated
 with a priority. Priority preemption occurs when a I2RS
 client with a higher priority writes a node which has been
 written by an I2RS client (with the lower priority). At this
 point, the I2RS agent (netconf server) allows the write and
 provides a notification indication to the notification
 publication/subscription service.

5. Error handling

 Error handling is an I2RS protocol features. Normal error handling
 of I2RS Agent for an I2RS client’s information examines the
 following:

 o syntax validation for nodes of data model,

 o referential validation for nodes of data model,

 o grouping of data within a data models or across data models to
 accomplish tasks,

 o permission to write nodes of data model,

 o grouping,

 o priority to write nodes of data model being higher than existing
 priority

 This section describes the ephemeral data stores handling of each of
 these error functions.

5.1. syntax validation

 Syntax validation of the message should be done according to the
 NETCONF or RESTCONF protocol features. New features for ephemeral
 datastore should provide the error handling with the feature.

 Syntax validation of the data model included in the ephemeral data
 store should be done by the

Hares, et al. Expires April 19, 2016 [Page 8]

Internet-Draft I2RS Ephemeral State Requirements October 2015

5.2. Referential validation

 The ephemeral data store normal processing does not do the following
 referencial checks: leafref, MUST, instance identifier. The removal
 of this validations allows for intelligence I2RS clients to rapidly
 read or write data, and handle error conditions at a higher level.

5.3. Grouping and Error handling

 Yang 1.0 and Yang 1.1 provide the ability to group data in groupings,
 leafref lists, lists and containers. Data model group data in order
 to group data that is logical associated with one another. Data
 models may logical group data across groupings. One example of such
 an association is the association of a static route with an
 interface. The concepts of groupings apply to both ephemeral and
 non-ephemeral nodes within a data model.

 Error handling on writes of the ephemeral datastore is different for
 nodes that are grouped versus orthogonal. Group nodes may need to be
 all changed or all removed (all-or-nothing). In contrast, writing
 orthogonal data nodes in the same data module or betwen data models
 need to be added or deleted in sync.

 The [I-D.ietf-i2rs-architecture] specifies three types of error
 handling for a partial write operation: "all-or-nothing", "stop-on-
 error", or "continue-on-error". Partial write operations of "stop-
 on-error" or "continue-on-error" are allowed only for data writes
 which are not a part of a grouping within a data model. The
 definition of the I2RS error conditions are:

 o stop-on-error - means that the configuration process stops when a
 write to the configuration detects an error due to write conflict.

 o continue-on-error - means the configuration process continues when
 a write to the configuration detects an error due to write
 process, and error reports are transmitted back to the client
 writing the error.

 o all-or-nothing - means that all of the configuration process is
 correctly applied or no configuration process is applied.
 (Inherent in all-or-nothing is the concept of checking all changes
 before applying.)

5.3.1. NETCONF Support of Partial Writes

 NETCONF does not support a mandated sequencing of edit functions or
 write functions. Without this mandated sequences, NETCONF cannot
 support partial edits.

Hares, et al. Expires April 19, 2016 [Page 9]

Internet-Draft I2RS Ephemeral State Requirements October 2015

5.3.2. RESTCONF Support of Partial Writes

 RESTCONF has a complete set of operations per message. The RESTCONF
 patch can support accesing multiple data messages.

5.3.3. Initial Support of Parital Writes

 The initial releases of I2RS will only require "all-or-nothing" in
 the I2RS Agent.

5.4. priority preemption

 I2RS protocol uses priority to resolve two I2RS clients having
 permissions to write the same pieces of data in an I2RS agent
 (NETCONF server). If two (or more) I2RS clients attempt to write the
 same data, the the one with the highest priority is enable to write
 the data. In the case of two clients with teh sample priority
 attempting to write data, the the first one to request write wins.

 Each client has a unique priority. Client identities and priorities
 are assigned outside of I2RS by exterior mechanisms such as AAA or
 adminstrative interfaces. A valid I2RS client must have both an
 identity and a priority.

 A sample container for I2RS client information is shown below.

 container i2rs-clients {
 leaf max-clients {
 config false;
 mandatory true;
 type uint32 {
 range "1 .. max";
 }
 }
 list i2rs-client {
 key name;
 unique priority;
 leaf name { ... }
 leaf priority { ... }
 }
 }
 Figure 3

6. Yang Library Use by Ephemeral

 The data modules supporting the Ephemeral datastore can use the Yang
 module to describe their datastore. Figure x shows the module
 library data structure. One part of the features of a module is the

Hares, et al. Expires April 19, 2016 [Page 10]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 type of ephemeral support (module level, submodule level, or node
 level with a list of nodes). A feature list gives the reference to
 the identifier for thea ephemeral support. The feature references
 may allow for vendor extensions to ephemeral support for a specific
 model. Similarly, the deviation may point to a deviation for a
 ephemeral state model.

 +--ro modules
 +--ro module*[name revision]
 +--ro name yang: yang-identifier
 +--ro revision union;
 +--ro schema? inet:uri
 +--ro namespace inet:uri
 +--ro feature* yang:yang-identifier
 +--ro deviation* [name revision]
 | +-- ro name yang:yang-identifier
 | +-- ro revision union
 +--ro conformance enumeration
 +--ro submodules
 +--ro submodule*[name revision]
 +--ro name yang:yang-identifier
 +--ro revision union
 +--ro schema? inet:uri

7. transport protocol

7.1. Secure Protocols

 NETCONF’s XML-based protocol ([RFC6241]) can operate over the
 following secure and encrypted transport layer protocols:

 SSH as defined in [RFC6242],

 TLS with X.509 authentication [RFC7589]

 RESTCONF’s XML-based or JSON [RFC7158] data encodings of Yang
 functions are passed over http with (GET, POST, PUT, PATCH, DELETE,
 OPTIONS, and HEAD).

7.2. Insecure Protocol

 The ephemeral database may support insecure protocols for information
 which is ephemeral state which does not engage configuration. The
 insecure protocol must be defined in conjunction with a data model or
 a subdata model.

Hares, et al. Expires April 19, 2016 [Page 11]

Internet-Draft I2RS Ephemeral State Requirements October 2015

8. Simple Thermostat Model

 In this discussion of ephemeral configuration, this draft utilizes a
 simple thermostat model with the yang configuration found in figure
 4.

 module thermostat {
 ..
 leaf desired-temp {
 type int32;
 units "degrees Celsius";
 description "The desired temperature";
 }

 leaf actual-temp {
 type int32;
 config false;
 units "degrees Celsius";
 description "The measured temperature
 (operational state).";
 }
 }

 Figure 4 - Simple thermostat model yabng

 Figure 5 shows the diagram of the configuration state with the Simple
 thermostat model being attached to by an I2RS scheduler client
 receiving query information regarding intended configuration and
 actual configuration. Scheduler has a schedule set of temperatures
 to put in the thermostat. Actual temperature is operational state.

Hares, et al. Expires April 19, 2016 [Page 12]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 :Candidate : --> : Desired temp:-->:start-up :

 |
 V
 ============ ===========
 | Intended |----| I2RS |
 | config | |scheduler|
 | | | client |
 ============ ===========
 config true ^
 ------------------------------- |
 config false |
 ============= |
 | Actual |--------|
 | config |
 =============

 | actual temp |
 |(operational |
 | state |
 | (op-state) |

 Figure 5 - Scheduler client only

 Figure 6 shows two I2RS clients talking to this model: scheduler and
 hold-temp. Scheduler has a schedule set of temperatures to put in
 the thermostat. Hold-temp holds the temperature at the same value.
 The hold-temp I2RS client has a higher priority than the scheduler
 client.

Hares, et al. Expires April 19, 2016 [Page 13]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 :Candidate :---: Desired temp : -- :start-up :

 |
 | =============
 | |I2rs Client|
 | |scheduler |
 V / ============
 /
 ephemeral . ’’’’’’’’’’’’’’’/. ==============
 datastore . ’desired-temp’---- |I2RS Client |
 . ’’’’’’’’’|’’’’ . | hold temp |
 . | . ==============
 . | . ============
 . |---------| intended |
 . . | config |
 . . ======||====
 config true . . ||
 -------------------------------------- ||
 config false ||
 ============= ||
 | Actual |============
 | config |
 =============

 | actual temp |
 | (op-state) |

 Figure 6 - Two I2RS clients

9. Yang changes

 Yang needs to add a key word ephemeral at the leaf node that signal
 allowing a version of desired-temp in the ephemeral datatstore in
 yang.

Hares, et al. Expires April 19, 2016 [Page 14]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 module thermostat {
 ..

 leaf desired-temp {
 type int32;
 units "degrees Celsius";
 ephemeral true;
 description "The desired temperature";
 }

 leaf actual-temp {
 type int32;
 config false;
 units "degrees Celsius";
 description "The measured temperature";
 }
 }

 Figure 7 - Simple Thermostat Yang with ephemeral

 Figure 7 shows the thermostat model has emphemeral variable desired-
 temp in the running configuration and the ephemeral data store. The
 RESTCONF way of addressings is below:

 RESTCONF running data store

 PUT /restconf/data/thermostat:desired-temp
 {"desired-temp":18}

 RESTCONF ephemeral datastore

 PUT /restconf/data/thermostat:desired-temp?datastore=ephemeral
 {"desired-temp":19 }

 Figure 8 - RESTCONF setting of ephemeral state

 The NETCONF way of transmitting this data would be

Hares, et al. Expires April 19, 2016 [Page 15]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 <rpc-message-id=101
 xmlns="urn:ietf:params:xml:ns:base:1.0">
 <edit-config>
 <target>
 <ephemeral>
 </target>
 <config>
 <top xmlsns="http:://example.com/schema/1.0/thermostat/config>
 <desired-temp> 18 </desired-temp>
 </top>
 </config>
 </edit-config>
 </rpc>

 Note: config=TRUE; datastore = ephemeral

 figure 8 NETCONF setting of desired-temp

10. NETCONF protocol extensions for the ephemeral datastore

 capability-name: ephemeral-datastore

10.1. Overview

 This capability defines the NETCONF protocol extensions for the
 ephemeral state. The ephemeral state has the following features:

 o the ephemeral datastore is a datastore holds configuration
 information (Config=true) that is intended to not survive a
 reboot.

 o The ephemeral capbility is signalled as a capability for a node, a
 sub-module, or a module either in the conformance portion of
 NETCONF (<hello>) or via netconf yang module library
 ([I-D.ietf-netconf-yang-library]) used by Yang 1.1 and RESTCONF.

 o ephemeral data will be doted by an "ephemeral statement at the
 node, module "

 o The ephemeral datastore is never locked.

 o Each client has a unique priority.

 o The ephemeral data store is one pane of glass that overrides the
 intended config which is normally the running datastore, but can
 be designted as the candidate config.

Hares, et al. Expires April 19, 2016 [Page 16]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 o Ephemeral data nodes can occur as part of the following types of
 data modules:

 * protocol dependent data models which mix non-ephemeral and
 ephemeral configuration data (config=true),

 * protocol dependent data models which have only ephemeral data
 models,

 * protocol independent data modules with only ephemeral data,

 However, ephemeral data nodes cannot have non-ephemeral data nodes
 within the subtree. Ephemeral sub-modules cannot have non-
 ephemeral data nodes wihin the module. Ephemeral modules cannot
 have non-ephemeral sub-modules or nodes within the module.

 o ephemeral error checking allows for two additional options:

 * reduced error checking that remove the requirement for leafref
 checking, MUST clauses, and instance identifier validation.

 * write operation with a priority premption by a higher priority
 client of the lower priority clients write where the overwrite
 triggers a notification by the I2RS agent to the lower priority
 client.

10.2. Dependencies

 The followign are the dependencies for ephemeral support:

 The Yang data modules must be flag with the ephemeral data store
 at the node, sub-module and model.

 The Yang data modules must be flag with the ephemeral data store.

 The Yang modules must support the notification of write-conflicts.

10.3. Capability identifier

 The ephemeral-datastore capability is identified by the following
 capability string: (capability uri)

10.4. New Operations

Hares, et al. Expires April 19, 2016 [Page 17]

Internet-Draft I2RS Ephemeral State Requirements October 2015

10.4.1. link-ephemeral

 The <link-ephemeral> allows the ephemeral datastore to be a pane of
 glass that impacts either the running-config configuration pane of
 glass or the candidate configuration pane of glass.

 <link-ephemeral> target-config

 where target config is:
 writable-running or candidate config.

10.4.2. Bulk-write

 The bulk-write goes here if we need one. So far, editor cannot find
 a case.

10.4.3. Bulk-Read

 The bulk-read goes here if we need one, so far the editor cannot find
 a case.

10.5. Modification to existing operations

 The capability for :ephemeral-datastore modifies the target for
 existing operations.

10.5.1. <get-config>

 The :ephemeral-datastore capability modifies the <edit-config> to
 accept the <ephemeral> as a target for source, and allows the filters
 focused on a particular module, submodule, or node.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <emphemeral-datastore/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.0/thermostat/config">
 <desired-temp>
 </top>
 </filter>
 </get-config>
 </rpc>

Hares, et al. Expires April 19, 2016 [Page 18]

Internet-Draft I2RS Ephemeral State Requirements October 2015

10.5.2. <edit-config>

 The :ephemeral-datastore capability modifies the <edit-config> to
 accept the <ephemeral> as a target for source with filters. The
 operations of merge, replace, create, delete, and remove are
 available, but each of these operations is modified by the priority
 write as follows:

 <merge> parameter is replaced by - merge-priority. The current
 data is modified by the new data in a merge fashion only if
 existing data either does not exist, or is owned by a lower
 priority client. If any data is replaced, this event is passed to
 the notification function within the pub/sub and traceability.

 <replace> is replaced by replace-priority - which only replaces
 data if the existing data is owned by a lower priority client. If
 data any data is replaced, this event is passed to the
 notification function within pub/sub and traceability for
 notification to the previous client. The success or failure of
 the event is passed to traceabilty.

 <create> - the creation of the data node works as in [RFC6241]
 except that the success or failure is passed to pub/sub and
 traceability functions.

 <deletion> - the deletion of the data node works as in [RFC6241]
 except event that the success or the error event is passed to the
 notiication function withi pub/sub and traceability functions.

 <remove> - the remove of the data node works as in [RFC6241]
 except that all results are forwarded to traceabilty.

 The existing parameters are modified as follows:

 <target> - add a target of :emphemeral-datastore

 <default-operation> -sllows only <merge-priority> or <replace-
 priority>

 <error-option> - the I2RS agent agent has "stop-on-error",
 "continue-on-error", and "all-or-nothing" which follow the
 validation rules listed above. This also requires I2RS agents
 that support writes to have a "all-or-nothing"/"rollback-on-error"
 function.

 Note: The I2RS minimal function suggests that only error function
 that is required is the "all-or-nothing" function.

Hares, et al. Expires April 19, 2016 [Page 19]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 positive response - the <ok> is sent for a positive response
 within an <rpc-reply>.

 negative response - the <rpc-error> is sent for a negative
 response within an <rpc-reply>.

10.5.3. <copy-config>

 Copy config allows for the complete replacement of all the ephemeral
 nodes within a target. The alternation is that source is the
 :ephemeral datastore with the fitlering to match the datasore.

10.5.4. <delete-config>

 The delete will delete all ephemeral nodes out of a datastore. The
 target must be changed to be ephemeral configuration and filters.

10.5.5. <lock> and <unlock>

 Lock and unlock are not supported with a target of :ephemeral-
 datastore.

10.5.6. <get>

 The <get> is altered to allow a target of :ephemeral-datastore and
 with the filters.

10.5.7. <close-session> and <kill-session>

 The close session is modified to take a taret of "ephemeral-
 datastore" and to not release locks.

 The kill session is modified to take a target of "ephemeral-
 datastore, and to not change locks. "

10.6. Interactions with Other Capabilities

 [RFC6241] defines NETCONF capabilities for writeable-running
 datastore, candidate config data store, confirmed commit, rollback-
 on-error, validate, distinct start-up, URL capability, and XPATH
 capability.

10.6.1. writable-running and candidate datastore

 The writeable-running and the candidate datastore can be used in
 conjunction with the ephemeral data store. Ephemeral database
 overlays an intended configuration - either the writable-running or

Hares, et al. Expires April 19, 2016 [Page 20]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 the c candidate configuration data store. The <link-ephemeral>
 operation links the two databases.

10.6.2. confirmed commmit

 Confirmed commit capability is not supported for the ephemeral
 datastore.

10.6.3. rollback-on-error

 The rollback-on-error when included with ephemeral state allows the
 error handling to be "all-or-nothing" (roll-back-on-error), "stop-on-
 error", and "continue-on-error". The error handling with I2RS
 ephemeral state is described above. Initial implementations of the
 I2RS agent are only required to support the default "roll-back-on-
 error". The use of the rollback-on-error capability allows the
 optional support of more capabiity in enhanced I2RS nodes.

10.6.4. validate

 The <validate> key word is expanded to support the following:

 source: ephemeral-datastore

 filters: reference to data node, sub-module or module.

10.6.5. Distinct Startup Capability

 This NETCONF capability appears to operate to load write-able running
 config, running-config, or candidate datastore. The ephemeral state
 does not change the environment based on this command.

10.6.6. URL capability and XPATH capability

 The URL capabilities specify a <url> in the <source> and <target>.
 The initial suggestion to allow both of these features to work with
 ephemeral operation.

11. RESTCONF protocol extensions for the ephemeral datastore

 capability-name: ephemeral-datastore

11.1. Overview

 This capability defines the RESTCONF protocol extensions for the
 ephemeral state. The ephemeral state has the features described in
 the previous section on NETCONF.

Hares, et al. Expires April 19, 2016 [Page 21]

Internet-Draft I2RS Ephemeral State Requirements October 2015

11.2. Dependencies

 The ephemeral capabilities have the following dependencies:

 Yang data nodes, sub-modules, or modules must be flaged with the
 config datastore flag;

 The Yang modules must support the notification of write-conflicts.

 The I2RS Yang modules must support the following:

 the yang-patch features as specified in
 [I-D.ietf-netconf-yang-patch].

 The yang module library feature
 [I-D.ietf-netconf-yang-library],

11.3. Capability identifier

 The ephemeral-datastore capability is identified by the following
 capability string: (capability uri)

11.4. New Operations

11.4.1. Bulk-write

 The bulk-write goes here.

11.4.2. Bulk-Read

 The bulk-read goes here.

11.5. modification to data resources

 RESTCONF must be able to support the ephemeral datstore with its
 rules as part of the "{+restconf}/data" subtree. The "edit
 collision" features in RESTCONF must be able to provide notification
 to the I2RS pub/sub facility and the traceability functions. The
 "timestamp" with a last modified features must support the
 traceability function.

11.6. Modification to existing operations

 The current operations in RESTCONF are: OPTIONS, HEAD, GET, POST,
 PUT, PATCH, and DELETE. This section describes the modification to
 these exiting operations.

Hares, et al. Expires April 19, 2016 [Page 22]

Internet-Draft I2RS Ephemeral State Requirements October 2015

11.6.1. OPTIONS changes

 The options methods should be augmented by the
 [I-D.ietf-netconf-yang-library] information that will provide an
 indication of what ephemeral state exists in a data modules, or a
 data modules sub-modules or nodes.

11.6.2. HEAD changes

 The HEAD in retrieving the headers of a resources. It would be
 useful to changes these headers to indicate the datastore a node or
 submodule or module is in.

 (editor)TBD on how HEAD can be chaned to do this.

11.6.3. GET changes

 GET must be able to read from the URL and a particular datastore.

 (editor) TBD on how to filter for datastore in read.

11.6.4. POST changes

 POST must simply be able to create resources in ephemeral datastores
 and invoke operations defined in ephemeral data models using the
 rules of the ephemeral database.

11.6.5. PUT changes

 PUT must be able to reference an ephemeral module, sub-module, and
 nodes.

11.6.6. PATCH changes

 Plain PATCH must be able to update or create child resources in an
 ephemeral datastore. The PATCH for the ephemeral state must be
 change to provide a merge or update of the original data only if the
 client’s using the patch has a higher priority than an existing
 datastore’s client, or if PATCH requests to create a new node, sub-
 module or module in the datastore.

11.6.7. DELETE changes

 The phrase "?datastore=ephemeral" following an element will specify
 the ephemeral data store when deleting entry.

Hares, et al. Expires April 19, 2016 [Page 23]

Internet-Draft I2RS Ephemeral State Requirements October 2015

11.6.8. Query Parameters

 The query parameters (content, depth, fields, insert, point, start-
 time, stop-time, and with-defaults (report-all, trim, explicit,
 report-all-tagged) must support ephemeral datastores described above.

11.7. Interactions with Other Capabilities

 The ephemeral database must support subscribing to receiving
 notifications as Event stream. The ephemeral database] support in
 RESTCONF must also support passing error information regarding
 ephemeral data access over to pub/sub client and traceability client.

12. IANA Considerations

 TBD

13. Security Considerations

 TBD

14. Acknowledgements

 This document is an attempt to distill lengthy conversations on the
 I2RS proto design team from August

 Here’s the list of the I2RS protocol design team members

 o Alia Atlas

 o Ignas Bagdonas

 o Andy Bierman

 o Alex Clemm

 o Eric Voit

 o Kent Watsen

 o Jeff Haas

 o Keyur Patel

 o Hariharan Ananthakrishnan

 o Dean Bogdanavich

Hares, et al. Expires April 19, 2016 [Page 24]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 o Anu Nair

 o Juergen Schoenwaelder

 o Kent Watsen

15. References

15.1. Normative References:

 [I-D.hares-i2rs-auth-trans]
 Hares, S., Migault, D., and J. Halpern, "I2RS Security
 Related Requirements", draft-hares-i2rs-auth-trans-05
 (work in progress), August 2015.

 [I-D.ietf-i2rs-architecture]
 Atlas, A., Halpern, J., Hares, S., Ward, D., and T.
 Nadeau, "An Architecture for the Interface to the Routing
 System", draft-ietf-i2rs-architecture-09 (work in
 progress), March 2015.

 [I-D.ietf-i2rs-pub-sub-requirements]
 Voit, E., Clemm, A., and A. Prieto, "Requirements for
 Subscription to YANG Datastores", draft-ietf-i2rs-pub-sub-
 requirements-03 (work in progress), October 2015.

 [I-D.ietf-i2rs-rib-info-model]
 Bahadur, N., Kini, S., and J. Medved, "Routing Information
 Base Info Model", draft-ietf-i2rs-rib-info-model-07 (work
 in progress), September 2015.

 [I-D.ietf-i2rs-traceability]
 Clarke, J., Salgueiro, G., and C. Pignataro, "Interface to
 the Routing System (I2RS) Traceability: Framework and
 Information Model", draft-ietf-i2rs-traceability-03 (work
 in progress), May 2015.

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf-07 (work in
 progress), July 2015.

 [I-D.ietf-netconf-yang-library]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", draft-ietf-netconf-yang-library-01 (work in
 progress), July 2015.

Hares, et al. Expires April 19, 2016 [Page 25]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 [I-D.ietf-netconf-yang-patch]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Patch
 Media Type", draft-ietf-netconf-yang-patch-05 (work in
 progress), July 2015.

 [I-D.ietf-netmod-yang-metadata]
 Lhotka, L., "Defining and Using Metadata with YANG",
 draft-ietf-netmod-yang-metadata-02 (work in progress),
 September 2015.

 [I-D.openconfig-netmod-opstate]
 Shakir, R., Shaikh, A., and M. Hines, "Consistent Modeling
 of Operational State Data in YANG", draft-openconfig-
 netmod-opstate-01 (work in progress), July 2015.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <http://www.rfc-editor.org/info/rfc6242>.

 [RFC7158] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7158, DOI 10.17487/RFC7158, March
 2014, <http://www.rfc-editor.org/info/rfc7158>.

 [RFC7589] Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
 NETCONF Protocol over Transport Layer Security (TLS) with
 Mutual X.509 Authentication", RFC 7589,
 DOI 10.17487/RFC7589, June 2015,
 <http://www.rfc-editor.org/info/rfc7589>.

15.2. Informative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

Hares, et al. Expires April 19, 2016 [Page 26]

Internet-Draft I2RS Ephemeral State Requirements October 2015

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

Authors’ Addresses

 Susan Hares
 Huawei
 Saline
 US

 Email: shares@ndzh.com

 Andy Bierman
 YumaWorks

 Email: andy@yumaworks.com

 Kent Watsen
 Juniper

 Email: kwatsen@juniper.net

Hares, et al. Expires April 19, 2016 [Page 27]

