Re: [Idnet] IDN dedicated session call for case

"Diego R. Lopez" <> Tue, 08 August 2017 14:57 UTC

Return-Path: <>
Received: from localhost (localhost []) by (Postfix) with ESMTP id 88194132335 for <>; Tue, 8 Aug 2017 07:57:10 -0700 (PDT)
X-Virus-Scanned: amavisd-new at
X-Spam-Flag: NO
X-Spam-Score: -2.909
X-Spam-Status: No, score=-2.909 tagged_above=-999 required=5 tests=[BAYES_00=-1.9, HTML_MESSAGE=0.001, RCVD_IN_DNSWL_NONE=-0.0001, RCVD_IN_MSPIKE_H5=-1, RCVD_IN_MSPIKE_WL=-0.01, SPF_PASS=-0.001, URIBL_BLOCKED=0.001] autolearn=ham autolearn_force=no
Received: from ([]) by localhost ( []) (amavisd-new, port 10024) with ESMTP id 5eOkFP1I6FDl for <>; Tue, 8 Aug 2017 07:57:04 -0700 (PDT)
Received: from ( []) (using TLSv1.2 with cipher ECDHE-RSA-AES256-SHA384 (256/256 bits)) (No client certificate requested) by (Postfix) with ESMTPS id D8011132323 for <>; Tue, 8 Aug 2017 07:57:01 -0700 (PDT)
Received: from ( by ( with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384_P256) id 15.1.1304.22; Tue, 8 Aug 2017 14:56:58 +0000
Received: from ([fe80::25:7eac:7ccc:f78d]) by ([fe80::25:7eac:7ccc:f78d%13]) with mapi id 15.01.1304.027; Tue, 8 Aug 2017 14:56:58 +0000
From: "Diego R. Lopez" <>
To: =?utf-8?B?SsOpcsO0bWUgRnJhbsOnb2lz?= <>, "Albert Cabellos" <>, yanshen <>
CC: "" <>
Thread-Topic: [Idnet] IDN dedicated session call for case
Thread-Index: AdMLcu+vuWBrdNuZQwG6l2oQPpJcKAEjy/qAABTa8AAABHMygA==
Date: Tue, 8 Aug 2017 14:56:58 +0000
Message-ID: <>
References: <> <> <>
In-Reply-To: <>
Accept-Language: en-US
Content-Language: en-US
user-agent: Microsoft-MacOutlook/f.21.0.170403
authentication-results: spf=none (sender IP is );
x-originating-ip: []
x-ms-publictraffictype: Email
x-microsoft-exchange-diagnostics: 1; DB6PR0601MB2167; 6:wdg23eDYP8MnfIR4WuFxE7dsk8e8IG1w8c2Ad/zAzqEG+KJwa1qCwMOnguOlUyx0jabm7ZIVOKoz7u9DHu1FrT2XlTgpeQwTJ+SOpmmhddipzXirxvKwGkSRMFG6cpK7l8z0nEMFXt/bNrVcB4xICbUmpByocLv+X3vgVmTrEPuRk0y+A5A4JHi28L2w63BGbnD0jR4ETJrWusFG6oZIBIr4+QYBBnugXmDf9yZcZiSGKDdRbdwmzsRNlBPdBUV3O87UxRM0JWVdTFFfoHnP6FwcvD4YLeCps6gJaojKH3H2dCvBs6ijFX+l33Hb7UFxC++zPzhCNWxA50RVB+/o1A==; 5:y/rBjDG1952vO3ikXXYtk7M6TT7H7s7xGFGLb3I/O2PrnRPTfe9Kma8VZzzVV75s0OcFeuuBNtSlvWF7Mc6TA+aqCX40REW7GQdMJpaV3+5B4K6wroxAUkRTtFzspIJWdtQBaHEox3QX8JCAbcI1xA==; 24:R/eHGHu3NPQTA1fr/ISgR1/e/OjJmVvf83OfMmiY0udKcp1cnU7euq+dwi+UeES1rOFGR0+6tn+YEVMjo5gq4y3k4wdUi1ZOpoZvgdn49DM=; 7:Q484+UeBbnL0ahMmkkd1nzRpJbFhxzntOQQL3zPZmpLnyPQpxPM3egOIX6FbTOaz2zLxk8yNgbvXXOX6Gtkh68RfjRGgz95F9dx2gcMiK464RrqL6G8XCFsvDK3a/v7N+lCBZM6zbdJSat6WKIwbyJwE5jbvS56haJupIQ9AocBl76hfZtcCdthjYvbbV/KxwCU25ZvCu1wRsJlndbS2OBd71bS2GEEwSciK/SJS4iM=
x-ms-office365-filtering-correlation-id: c43dd6f6-a8ac-4eb0-8ea6-08d4de6db7c9
x-ms-office365-filtering-ht: Tenant
x-microsoft-antispam: UriScan:; BCL:0; PCL:0; RULEID:(300000500095)(300135000095)(300000501095)(300135300095)(22001)(300000502095)(300135100095)(2017030254152)(48565401081)(300000503095)(300135400095)(2017052603031)(201703131423075)(201703031133081)(201702281549075)(300000504095)(300135200095)(300000505095)(300135600095)(300000506095)(300135500095); SRVR:DB6PR0601MB2167;
x-ms-traffictypediagnostic: DB6PR0601MB2167:
x-exchange-antispam-report-test: UriScan:(40392960112811)(209352067349851)(131327999870524)(50582790962513)(21748063052155);
x-microsoft-antispam-prvs: <>
x-exchange-antispam-report-cfa-test: BCL:0; PCL:0; RULEID:(100000700101)(100105000095)(100000701101)(100105300095)(100000702101)(100105100095)(6040450)(601004)(2401047)(5005006)(8121501046)(93006095)(93001095)(10201501046)(3002001)(100000703101)(100105400095)(6055026)(6041248)(20161123562025)(20161123564025)(20161123558100)(20161123560025)(20161123555025)(201703131423075)(201702281529075)(201702281528075)(201703061421075)(201703061406153)(6072148)(201708071742011)(100000704101)(100105200095)(100000705101)(100105500095); SRVR:DB6PR0601MB2167; BCL:0; PCL:0; RULEID:(100000800101)(100110000095)(100000801101)(100110300095)(100000802101)(100110100095)(100000803101)(100110400095)(100000804101)(100110200095)(100000805101)(100110500095); SRVR:DB6PR0601MB2167;
x-forefront-prvs: 03932714EB
x-forefront-antispam-report: SFV:NSPM; SFS:(10019020)(39410400002)(39850400002)(39450400003)(39840400002)(39860400002)(39400400002)(40134004)(50944005)(189002)(24454002)(25724002)(377454003)(53754006)(252514010)(199003)(86362001)(33656002)(83716003)(39060400002)(53936002)(105586002)(6506006)(3660700001)(82746002)(81166006)(6512007)(6306002)(6436002)(81156014)(2950100002)(54896002)(236005)(99286003)(106356001)(229853002)(6486002)(101416001)(8676002)(966005)(2906002)(5250100002)(8936002)(14454004)(97736004)(3280700002)(9326002)(68736007)(189998001)(6246003)(4001350100001)(50986999)(5660300001)(2900100001)(606006)(25786009)(38730400002)(53546010)(36756003)(83506001)(54356999)(4326008)(102836003)(6116002)(66066001)(76176999)(3846002)(7736002)(478600001); DIR:OUT; SFP:1102; SCL:1; SRVR:DB6PR0601MB2167;; FPR:; SPF:None; PTR:InfoNoRecords; MX:1; A:1; LANG:en;
received-spf: None ( does not designate permitted sender hosts)
spamdiagnosticoutput: 1:99
spamdiagnosticmetadata: NSPM
Content-Type: multipart/alternative; boundary="_000_051F18D1621A4BF794F63C2D243F39C8telefonicacom_"
MIME-Version: 1.0
X-MS-Exchange-CrossTenant-originalarrivaltime: 08 Aug 2017 14:56:58.1542 (UTC)
X-MS-Exchange-CrossTenant-fromentityheader: Hosted
X-MS-Exchange-CrossTenant-id: 9744600e-3e04-492e-baa1-25ec245c6f10
X-MS-Exchange-Transport-CrossTenantHeadersStamped: DB6PR0601MB2167
Archived-At: <>
Subject: Re: [Idnet] IDN dedicated session call for case
X-Mailman-Version: 2.1.22
Precedence: list
List-Id: "The IDNet \(Intelligence-Defined Network\) " <>
List-Unsubscribe: <>, <>
List-Archive: <>
List-Post: <>
List-Help: <>
List-Subscribe: <>, <>
X-List-Received-Date: Tue, 08 Aug 2017 14:57:11 -0000

Hi Jerome,

Agreed. This is a use case we are very much interested in, and actually working in it now. Just let me say we are trying to evaluate which are the significant features of the flow to perform a proper classification, depending on the flow nature (TLS, DTLS, QUIC, IPsec…), and that would define the concrete data to be exchanged or stored.

Be goode,

"Esta vez no fallaremos, Doctor Infierno"

Dr Diego R. Lopez
Telefonica I+D

Tel:        +34 913 129 041
Mobile: +34 682 051 091

On 8/8/2017, 16:49 , "IDNET on behalf of Jérôme François" <<> on behalf of<>> wrote:

Hi all,

Here is another use case about traffic classification.

Use case N+3: (encrypted) traffic classification

    Description: collect flow-level traffic metrics such as protocol information but also meta metrics such as distribution of packet sizes, inter-arrival times... Then use such information to label the trafic with the underlying application assuming that the granularity of classification may vary (type of application, exact application name, version...)
    Process: 1. collect packet information 2. flow reassembly (using directly flow format such as IPFIX might be possible but depends on the type of traffic, e.g. extracting the TLS application data is useful for encrypted traffic) 3. Collect application specific information (useful when targeting a single type of application) = out of network information 4. train the model 5. Online or offline testing 4. Apply application level policies.
    Data Format:    Time : [Start, End, Unit, Number of Value, Sampling Period]
                                Position: [Device ID, Port ID]
                                Direction: IN / OUT
                                Flow level metric: packet size distributions, number of packets, inter-arrival time distribution,
                                 (+ application specific knowledge : payload parsing)

    Message :       Request: ask for the data
                           Reply: Data
                           Notice: For notification or others
                           Policy: Control policy

Best regards,

Le 08/08/2017 à 06:52, Albert Cabellos a écrit :
Hi all

Here´s another use-case:

Use case N+2: QoE
        Description: Collect low-level metrics (SNR, latency, jitter, losses, etc) and measure QoE. Then use ML to understand what is the relation between satisfactory QoE and the low-level metrics. As an example learn that when delay>N then QoE is degraded, but when M<delay<N then QoE is satisfactory for the customers (please note that QoE cannot be measured directly over your network). This is useful to understand how the network must be operated to provide satisfactory QoE.
        Process: 1. Low-level data collection and QoE measurement ; 2. Training Model (input low-level metrics, output QoE); 3. Real-time data capture and input; 4. Predict QoE; 5. Operate network to meet target QoE requirement, go to 3.
        Data Format:    Time : [Start, End, Unit, Number of Value, Sampling Period]
                                Position: [Device ID, Port ID]
                                Direction: IN / OUT
                                Low-level metric : SNR, Delay, Jitter, queue-size, etc

        Message :       Request: ask for the data
                                Reply: Data
                                Notice: For notification or others
                                Policy: Control policy

Kind regards


On Wed, Aug 2, 2017 at 7:12 PM, yanshen <<>> wrote:
Dear all,

Since we plan to organize a dedicated session in NMRG, IETF100, for applying AI into network management (NM), I’d try to list some Use Cases and propose a roadmap and ToC before Nov.

These might be rough. You are welcome to refine them and propose your focused use cases or ideas.

Use case 1: Traffic Prediction
        Description: Collect the history traffic data and external data which may influence the traffic. Predict the traffic in short/long/specific term. Avoid the congestion or risk in previously.
        Process: 1. Data collection (e.g. traffic sample of physical/logical port ); 2. Training Model; 3. Real-time data capture and input; 4. Predication output; 5. Fix error and go back to 3.
        Data Format:    Time : [Start, End, Unit, Number of Value, Sampling Period]
                                Position: [Device ID, Port ID]
                                Direction: IN / OUT
                                Route : [R1, R2, ..., RN]  (might be useful for some scenarios)
                                Service : [Service ID, Priority, ...]  (Not clear how to use it but seems useful)
                                Traffic: [T0, T1, T2, ..., TN]
        Message :       Request: ask for the data
                                Reply: Data
                                Notice: For notification or others
                                Policy: Control policy

Use case 2: QoS Management
        Description: Use multiple paths to distribute the traffic flows. Adjust the percentages. Avoid congestion and ensure QoS.
        Process: 1. Data capture (e.g. traffic sample of physical/logical port ); 2. Training Model; 3. Real-time data capture and input; 4. Output percentages; 5. Fix error and go back to 3.
        Data Format:    Time : [Timestamp, Value type (Delay/Packet Loss/...), Unit, Number of Value, Sampling Period]
                                Position: [Link ID, Device ID]
                                Value: [V0, V1, V2, ..., VN]
        Message :       Request: ask for the data
                                Reply: Data
                                Notice: For notification or others
                                Policy: Control policy

Use case N: Waiting for your Ideas

Also I suggest a roadmap before Nov if possible.

### Roadmap ###
Aug. : Collecting the use cases (related with NM). Rough thoughts and requirements
Sep. : Refining the cases and abstract the common elements
Oct. : Deeply analysis. Especially on Data Format, control flow, or other key points
Nov.: F2F discussions on IETF100
### Roadmap End ###

A rough ToC is listed in following. We may take it as a scope before Nov. Hope that the content could become the draft of draft.

###Table of Content###
1. Gap and Requirement Analysis
        1.1 Network Management requirement
        1.2 TBD
2. Use Cases
        2.1 Traffic Prediction
        2.2 QoS Management
        3.3 TBD
3. Data Focus
        3.1 Data attribute
        3.2 Data format
        3.3 TBD
4. Aims
        4.1 Benchmarking Framework
        4.2 TBD
###ToC End###


IDNET mailing list<>


IDNET mailing list<>


Este mensaje y sus adjuntos se dirigen exclusivamente a su destinatario, puede contener información privilegiada o confidencial y es para uso exclusivo de la persona o entidad de destino. Si no es usted. el destinatario indicado, queda notificado de que la lectura, utilización, divulgación y/o copia sin autorización puede estar prohibida en virtud de la legislación vigente. Si ha recibido este mensaje por error, le rogamos que nos lo comunique inmediatamente por esta misma vía y proceda a su destrucción.

The information contained in this transmission is privileged and confidential information intended only for the use of the individual or entity named above. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this transmission in error, do not read it. Please immediately reply to the sender that you have received this communication in error and then delete it.

Esta mensagem e seus anexos se dirigem exclusivamente ao seu destinatário, pode conter informação privilegiada ou confidencial e é para uso exclusivo da pessoa ou entidade de destino. Se não é vossa senhoria o destinatário indicado, fica notificado de que a leitura, utilização, divulgação e/ou cópia sem autorização pode estar proibida em virtude da legislação vigente. Se recebeu esta mensagem por erro, rogamos-lhe que nos o comunique imediatamente por esta mesma via e proceda a sua destruição