FT Computation (FTC) Algorithm

draft-cc-Isr-flooding-reduction-04

Huaimo Chen (huaimo.chen@futurewei.com)
Dean Cheng (deanccheng@gmail.com)
Mehmet Toy (mehmet.toy@verizon.com)

Yi Yang (yyietf@gmail.com)

Aijun Wang (wangaj.bri@chinatelecom.cn)
Xufeng Liu (xufeng.liu.ietf@gmail.com)
Yanhe Fan (yfan@casa-systems.com)

Lei Liu (liulei.kddi@gmail.com)

Overview

» Removed distributed flooding reduction, and related

» Updated Algorithm for flooding topology (FT) computation
to consider:
< Degree (D for short):

Degree of FT is the maximum degree among the degrees of
the nodes on FT. The degree of a node on FT is the number
of connections on FT it has to other nodes.

Basic Idea of FTC Algorithm

Select a node RO with the smallest node ID;

Build a tree using RO as root breadth first;/ gonsider
egree

Connect node whose D is one to anothe
(have FT: every node connects 2 or more Consider
nodes). Degree |

FT Examples by Algorithm

Link on FT

Minimum D = 2
Tolerant to any 1 link failure

FT Computation Details: build tree breadth first

Cq ={(RO,D=0,PH={ })}, FT={}, MaxD = 3.

0. Cq-={}, // remove the first element containing RO from Cq
FT={(RO,D=0,PHs={}) }; // add the element into FT /
Cqg = { (R1,D=0,PHs={R0}), (R2,D=0,PHs={R0}), // add Ri connected to RO into Cq <

(R3,D=0,PHs={R0}), (R4,D=0,PHs={R0}) }

1. /I remove the first element (R1,D=0,PHs={R0}) from Cq, R0’s D < MaxD
Caq ={(R2,0,{R0}), (R3,0,{R0}), (R4,0,{RO}) },
/[add (R1,0,{R0}) into FT, increase R0’s D and R1’s D by one
FT={(RO,1,{}), (R1,1,{R0O}) }; // Ri--R1in Cq, noton FT, add R1 to Ri’'s PHs
Cq={(R2,0,{RO,R1}), (R3,0, {RO,R1}), (R4,0,{RO,R1}) }.

Link on FT

2. Il remove the first element (R2,0, {RO,R1}) from Cqg, RO’s D < MaxD
Cq={(R3,0,{RO,R1}), (R4,0{RO,R1}) },
/[add (R2,0,{R0}) into FT, increase R0’s D and R2’s D by one iz
FT={(R0,2,{}), (R1,1, {RO}), (R2,1, {RO}) }i/IRi -- R2 in Cq, not on FT, add R2 to Ri’'s PHs RO
Cq ={(R3,0,{RO,R1,R2}), (R4,0,{RO,R1,R2}) }. \
3. I/l remove the first element (R3,0, {R0,R1,R2}) from Cq, R0’s D < MaxD
Cq={(R4,0{RO,R1,R2}) },
/[add (R3,0,R0) into FT, increase R0’s D and R3’s D by one
FT ={(R0,3, 0), (R1,1, RO), (R2,1, RO), (R3,1, RO) }.//Ri — R3 in Cq, add R3 to Ri’'s PHs
Cq={(R4,0{RO,R1,R2,R3}) }.

4. // remove the first element (R4,0, {RO,R1,R2,R3}) from Cq, R1’s D < MaxD
Cag={1},

/I add (R4,0,R1) into FT, increase R1’s D and R4’s D by one
FT ={(R0,3, 0), (R1,2, RO), (R2,1, R0O), (R3,1, RO), (R4,1,R1) }.
Cqg={1}.

4

FT COmpUtatiOn Details: connect node whose D=1

5. Cg={1} Link on FT
/l Get the first node R2 whose D=1

FT ={(R0,3, {}), (R1,2, {RO}), (R2.1, {RO}). (R3,1, {RO}), (R4,1, {R1}) }.

/I Add link R2-R3 to FT,

/I where R2-R3 is not on FT and R3’s D=1 is minimum and R3’s ID is minimum
/l'increase R2’s D and R3’s D by one

FT ={(R0,3,{}), (R1,2, {RO}), (R2.2, {RO}). (R3,2, {RO, R2}), (R4,1,{R1}) }.
Cag={1}

6. Cqg={}
/I Get the first node R4 whose D=1
FT ={(R0,3,{}), (R1,2, {RO}), (R2,2, {RO}), (R3,2, {RO, R2}), (R4.1.R1) }.
/[Add link R4-R2 to FT,
/I where R4-R2 is not on FT and R2’s D=2 is minimum and R2’s ID is minimum
/I increase R2’s D and R4’s D by one
FT ={(R0,3, {}), (R1,2, {R0}), (R2,3, {RO}), (R3,2, {RO, R2}), (R4.2, {R1,R2}) }.
Ca={}

FT ={(R0O,3, 0), (R1,2, {RO}), (R2,3, {RO}), (R3,2, {RO,R2}), (R4,2,{R1,R2}) }.

Algorithm in Detalls (1)

Algorithm starts from node RO as root with

+ a given maximum degree MaxD,

 a candidate queue Cq = {(RO, D = 0, PHs = { })},
« an empty flooding topology FT = {}.

Cqg contains one element (RO, D = 0, PHs = {}),

where

« node RO is the root,

« D = 0 indicates Degree of RO is O (i.e., the number
of links on FT connected to RO is 0),

« PHs = {} indicates that the Previous Hops (PHs for
short) of RO is empty.

Algorithm In Detalls (2)

Algorithm starts from RO, MaxD =3, Cq={(R0O,D=0,PHs={})}, and FT={}.

i /Step 1

Find and remove the first element with node A in Cq that is not on FT and one PH’s D in PHs < MaxD.
If there is no element with a node in Cq whose PHs !={ } and one PH in PHs whose D < MaxD

then MaxD++, restarts algorithm from RO, MaxD, Cq = {R0,D=0,PHs ={ }}, FT={ };

otherwise (i.e, A with one PH’s D in PHs < MaxD or PHs={ })

If PHs = { } (i.e., Ais the root), then add A with D=0 and PHs={ } into FT,;

otherwise (i.e., A is not the root. Assume that PH is the first one in PHs such that PH’s D < MaxD),
PH’s D++, add A with D=1 and PHs={PH} to FT.

Step 2
Yes Are all nodes on — P
Step 4 FT? No Step 3
/

\ \ 4
For each node B in FT whose D is Suppose that node Xi (i=1, 2, ..., n) is connected to
one, find a link L attached to B such node A and not on FT, and X1, X2, ..., Xnare inan
that L’s remote node R whose D and increasing order by their IDs (i.e., X1’s ID < X2’s ID
ID are minimum; add L to FT (i.e., <...<Xn’s ID).
add R into B’s PHs), increase B’s D If Xi is not in Cq, then add it into the end of Cq with
and R’s D by one. D =0, and PHs = {A};
Return FT. otherwise (i.e., Xi is in Cq), add A into the end of

il Xi’s PHs

End l

A

Next Step

Welcome comments
Request for adoption

Algorithm Considering Degree and Others (3)

Algorithm starts from RO, MaxD =3, Cq={(R0O,D =0, PHs={})}, and FT ={}.

Some nodes such as leaves in spine-leaf network have constraints on their degrees of 2 (i.e., each of leaf node has a
degree of 2 at maximum, which is represented as ConMaxD.

o

| /Step 1

Find and remove first element with node A in Cq not on FT and one PH’s D in PHs < MaxD and < its ConMaxD.
If there is no element with a node in Cq whose PHs != { } and one PH’D in PHs <MaxD and < its ConMaxD
then MaxD++, restarts algorithm from RO, MaxD, Cq = {RO,D=0,PHs={ }}, FT={ };

otherwise (i.e, A with one PH’s D in PHs < MaxD and < its ConMaxD or PHs = { })

If PHs = {} (i.e., Ais the root), then add A with D=0 and PHs={ } into FT,;

otherwise (i.e., A is not root. Assume PH is first one in PHs such that PH’s D < MaxD and < its ConMaxD),
PH’s D++, add A with D=1 and PHs={PH} to FT.

Step 2
Are all nodes on — P
FT? lNo

Step 4 \ Step 3

;) Suppose that node Xi (i=1, 2, ..., n) is connected to
For ea}Ch node Bin FT whose D is node A and not on FT, and X1, X2, ..., Xnare in an
one, find a link L attached to B such increasing order by their IDs (i.e., X1’s ID < X2’s ID
that L’s remote node R whose D and <...<Xn’s ID).
ID are minimum; add L to FT (i.e., If Xi is not in Cq, then add it into the end of Cq with
add R into B’s PHs), increase B’s D D =0, and PHs = {A};
and R’s D by one. otherwise (i.e., Xi is in Cq), add A into the end of
Return FT. Xi’s PHs

End

A

