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1 Motivation
(This section describes some issues with concurrent messages that have been
discussed before on the MLS list. Readers familiar with these issues can skip
to the next section.)

The version of TreeKEM described in the current MLS protocol draft [2]
implicitly assumes a consistent total order on state changes (key updates,
adds, and removes). That is, there is a linear sequence of group states agreed
upon by all group members, and each message leading to a state change can
only be generated by a user who knows its preceding state.

However, group communication protocols do not naturally impose a total
order on messages. While messages can be forced into a consistent total
order, say by a central server or by following predetermined client-side rules
[2, §8], this may result in messages being placed logically after messages that
their authors had not yet received. These messages may then fail, since they
assumed a different initial state. Failures can lead to starvation, in which
one user’s state changes repeatedly fail, and to violations of asynchronicity.
Concurrency issues are especially troubling in ad-hoc networks, in which the
group may frequently partition and re-merge, leading to concurrent messages
that go undetected for long periods of time.

For example, suppose there are two concurrent key updates, each fol-
lowed by adding a user. Then the two added users share no init secrets in
common, so that they cannot securely communicate without setting up a
separate peer-to-peer conversation or asking another user to mediate. To
avoid this, the current draft suggests we require existing users to “confirm”
an Add message before sending the added user’s Welcome message. This
violates asynchronicity.

TreeKEM does have some support for concurrent state change messages
[3, §5]. For example, concurrent Remove messages result in an init secret
unknown to any removed user but known to the remaining users, so long as
the resulting root secrets are put into the init secret derivation chain in a
consistent order.
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In particular, Update messages can be merged at nodes where they do
not conflict, with an arbitrary winner at conflicting nodes [3, pg. 9].

Figure 1: Merging updates in ordinary TreeKEM. Here a 7→ x and b 7→ y
concurrently.

If we put the init secrets resulting from both updates into the init se-
cret derivation chain, as suggested by Bhargavan et al. [3, Figure 6], then
the resulting init secret is unknown to an adversary who had previously
compromised either A or B.

However, this approach does not completely end the compromise. In the
above example, suppose an adversary compromised B, the right leaf, before
the concurrent key updates. Future Update messages by other users will
reveal some node secrets to the adversary, who still knows H(x). If another
user C is compromised in the future, the adversary will learn the init secret
resulting from A and B’s updates. Then even if C performs a key update,
the adversary will learn the new group secret, using H(x), contrary to what
we should expect. Unlike for the init secret, we cannot use a generic key
derivation function of H(x) and H(y) to derive the secret for A and B’s
nearest common ancestor, because other users need to be able to compute
the resulting public key without interaction.

This scenario is somewhat special, and may not significantly reduce our
security guarantees in a real-life setting. However, it certainly complicates
the precise statement of post-compromise security, which makes analyzing
the protocol and devising key update schedules both more difficult.

2 Causal TreeKEM
We now describe “Causal TreeKEM”, a proposed modification to TreeKEM
that has better support for concurrent updates. This section describes the
core of the approach, restricting to the case of static groups.

As in TreeKEM, fix some asymmetric cryptosystem with a Derive-Key-
Pair function DKP mapping binary strings to asymmetric key pairs, and
fix a preimage-resistant hash function H mapping binary strings to binary
strings. As a convenience, let priv(s) denote the private key of DKP (s). We
use a ratchet tree, i.e., a binary tree with key pairs at each node, precisely
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as in TreeKEM [2, §5], except that we omit node secrets from the stored
state. Node secrets will still play a role in key updates; this is their sole role
in TreeKEM as well.

A ratchet tree is initialized similar to TreeKEM, with public keys for each
user at the leaves, a random root key pair, and blanks elsewhere. However,
throughout Section 2.1 we will assume that all nodes are already populated
with key pairs, postponing our discussion of blank nodes until Section 3.1.

Additionally fix binary key combination operators ?1, ?2, acting on pri-
vate keys and public keys, respectively. Let ? = (?1, ?2) denote their combi-
nation acting on key pairs. We require the following properties:

(1) If (x, X) and (y, Y ) are valid key pairs, then so is (x, X) ? (y, Y ) =
(x ?1 y, X ?2 Y ).

(2) ? is associative and commutative.

(3) ?1 is cancellative: if x ?1 z = y ?1 z for some z, then x = y.

Example 2.1. Let g be the generator of a Diffie-Hellman group with order
|g|. Suppose we use a Diffie-Hellman based asymmetric cryptosystem, in
which key pairs have the form (x, gx). Then we can define ? on key pairs by

(x, gx) ? (y, gy) := (x + y (mod |g|), gxgy).

2.1 Key Updates

Users generate Update messages precisely as in ordinary TreeKEM. How-
ever, users process Update messages differently. Instead of treating an Up-
date message as an instruction to overwrite keys with new key material, we
treat it as an instruction to “? in” the new key material.

Specifically, a user B receiving an Update message from a user A uses it
to update their own view of the ratchet tree as follows:

• B updates the public keys for the nodes on A’s direct path as

(new public key) := (current public key)?2(public key in Update message).

• B updates the private key for their nearest common ancestor with A
as

(new private key) := (current private key)?1priv(secret in Update message).

B can decrypt this secret because by definition of a node’s resolution,
A has sent the secret encrypted under the public key K of some node
on B’s direct path. Because B knows the private key corresponding to
K, they can decrypt the secret. However, this depends on B knowing
which state A was in when they sent the Update message, so that they
know which version of the private key to use; we discuss this in Section
2.2 below.
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• B computes the secret contribution for all ancestors of their nearest
common ancestor with A, using H. B uses these secrets to compute
the new private keys in the same way as they compute the nearest
common ancestor’s new private key. That is, they set

(new private key) := (current private key)?1priv(H i(secret in Update message)),

where i is the distance from the node to the nearest common ancestor.

Figure 2: Merging updates in causal TreeKEM. Here the left leaf updates
with x and the right leaf updates with y concurrently.

Observe that the key update protocol preserves the usual invariant: every
user knows all private keys on their leaf’s path to the root, as well as all
public keys in the tree. In addition, they are not supposed to know any
other private keys.

Additionally, concurrent key updates are handled in a natural way, with
no need to discriminate between the updates.

Furthermore, because ? is associative and commutative, the order in
which users process Update messages does not affect their final state. Any
sequence of updates, applied in any order, yields the same tree of private
and public keys.

2.2 Causal Ordering

The previous section suggests that users can process Update messages in
any order. This is incorrect: a user must actually process Update messages
in causal order, so that they have the private key needed to decrypt each
Update message’s nearest common ancestor secret.

To describe this precisely, we borrow some definitions from the concur-
rency literature.

Definition 2.2. The causal order on state change messages is the partial
order < in which m < m′ if the author of m′ received and processed m
before sending m′. This includes the case that m and m′ have the same
author and m was sent before m′. Two messages are concurrent if they are
incomparable under <, i.e., neither m < m′ nor m′ < m. If m < m′, then m
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is a causal predecessor of m′, and m′ is a causal successor of m. The direct
causal predecessors of m are the maximal elements of {m′ | m′ < m}.

Definition 2.3. A configuration is a set S of state change messages that is
downwards-closed: if m′ ∈ S and m < m′ in the causal order, then m ∈ S.
We define a user configuration to be a pair (A, S), where A is a user and S
is a configuration. The ratchet tree of (A, S) is A’s view of the ratchet tree
after processing exactly the messages in S. The root private key of S is the
root’s private key in the ratchet tree of (A, S) for any user A.

We now mandate that when a user A sends a state change message m,
such as an Update message, they include a description of the set S of state
change messages that they have already processed. Note that S is necessarily
a configuration, and it is precisely the set of causal predecessors of m. When
a user B receives this message, they compute the ratchet tree of (B, S) and
use its private keys to decrypt the nearest common ancestor secret in m,
assuming they have received all of the messages in S.

One way to describe a configuration S is to include some identifier, such
as a hash, of each of the maximal elements of S. In other words, to each state
change message m, we attach a description of m’s direct causal predecessors.

Now all that we require of the messaging layer is causal broadcast, in
which messages are delivered in causal order to all users. This is much eas-
ier to implement than totally ordered broadcast. The problem of causal
broadcast in an asynchronous environment is well studied. For example,
Eugster et al. state formal security games for causal broadcast and exhibit a
simple protocol achieving it [5]. As another example, Depot [6] attains con-
sistent causal broadcast, in which all users see the same messages with the
same causal relations, even in the face of malicious users in an asynchronous
peer-to-peer setting. Causal broadcast is a desirable security property in
group messaging applications [5], so it is likely that applications will al-
ready implement causal broadcast and causal dependency tracking. Causal
TreeKEM can then reuse this to determine the causal predecessors of state
change messages, without consuming additional bandwidth.

2.3 Key Schedule

In contrast to TreeKEM, in Causal TreeKEM, the root private keys in a given
state depend on all causally prior key updates. Thus I propose to use root
private keys directly instead of generating separate init secrets. Application
keys can be derived similarly to in TreeKEM, using a key derivation function
applied to the current root private key and information about the group
state.

More precisely, suppose a user A wishes to encrypt a group communi-
cation. Let S be the set of state change messages that A has processed so
far. Then A derives an application key by applying some key derivation
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function to the root private key for S and some deterministic description of
the group state, e.g., a lexicographic membership list. A then encrypts their
communication using this key or one derived from it. A must also attach
some description of S to their communication, necessarily as plaintext, so
that recipients know which version of the root private key and group state
to use.

A user B receiving a communication tagged with S computes the root
private key of S and uses this to derive the encryption key.

As mentioned in Section 2.2, it is likely that applications will already im-
plement causal broadcast and causal dependency tracking. Causal TreeKEM
can then reuse this to determine the configurations S corresponding to en-
crypted communications, without consuming additional bandwidth.

Remark 2.4. Observe that the root public key is actually unnecessary, as
in TreeKEM, so we can omit the key pair and instead store only a secret bit
string at the root node, which we use to seed the application key in place of
the root private key. In this case, we must replace ? with some associative
and commutative operation on bit strings, such as exclusive-or. For ease of
presentation, we will continue assuming the root has a key pair that can be
operated on by ?, with the understanding that this may be replaced by a
secret bit string operated on by exclusive-or.

3 Dynamic Groups

3.1 Blank Nodes

As in TreeKEM, we allow blank nodes. The private and public key of a
blank node are undefined.

We adopt the following rules for blank nodes:

• A state change message that sets a node to blank overrides all concur-
rent updates to that node’s key pair, i.e., any state change message
that is not a causal predecessor or successor.

• When computing the ratchet tree of a configuration that includes a
state change message involving blanks, we treat the total contribution,
of that message and all of its causal predecessors, towards the key pair
at any node where it is blank, to be some fixed constant value. In other
words, a blank overwrites prior keys with a constant value instead of
combining with them. A natural choice for the constant value is the
identity of ?, if it exists.

These rules have essentially the same effect as the rule, in the totally ordered
update case, to always process concurrent Update messages before messages
that introduce blank nodes, namely, Adds and Removes. Such a rule is
mentioned in the Messaging Layer Security working draft [2, §8].

6



3.2 Removing Users

We define a Remove message to contain:

• A list of the removed users.

• A new secret value s, encrypted under various node public keys such
that it can be decrypted by the remaining users only.

For example, if a single user is being removed, then s is sent encrypted under
the public keys in (the resolutions of) the removed user’s copath nodes,
similar to ordinary TreeKEM’s approach but without hashing up the tree.
At the opposite extreme, if users at alternating leaves are being removed,
then s is sent encrypted under the leaf public keys of the remaining users.

Each user processes a Remove message as follows:

• Decrypt s and combine DKP (s) with the root key pair using ?.

• Delete the removed users’ leaves and set all of their direct path key
pairs to blank.

Note that after concurrent Remove messages, the resulting root private
key is unknown to any removed user, but two users removed in different
messages can work together to determine the root private key. This issue is
noted by Bhargavan et al. but not addressed by them [3, §5].

To resolve this issue, we require: if a user wishes to “use” their current
group state, either to encrypt a communication or to generate a state change
message, after processing concurrent Remove messages, then they must first
send a Remove message that removes the union of the concurrent messages’
removed sets. This has the effect of sending a new secret to the remaining
users only. (The same approach could be used with ordinary TreeKEM.)

Update messages concurrent to a Remove message are processed as usual,
noting that their non-root private key contributions might be overwritten by
blanks. Because they still contribute to the root private key, we intuitively
expect to get the usual post-compromise security guarantees.

To prevent a removed user from altering the group state, we adopt the
rule that no user will process an Update message from a removed user,
unless another user generates a state change message that causally depends
on it, presumably because they had not yet received the Remove message.
Note that any Update messages that do get processed for this reason are
harmless, since they cannot undo the Remove message’s contribution to the
group state.

Remark 3.1. There remain issues with adjudicating concurrent member-
ship changes, e.g., handling two users who remove each other, allegedly
concurrently (but possibly actually one in response to the other). These
seem orthogonal to the topic at hand.
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3.3 Adding Users

A user A adds a user B as follows. First, A generates an Update message u
but does not send it. Next, A sends a Welcome message to B containing:

(i) The current set of group members.

(ii) The root private key and public key tree for the ratchet tree resulting
after A processes u.

(iii) A’s direct path private keys in the ratchet tree of (A, S), for any config-
uration S such that there may exist a state change message, concurrent
to the Add message (below), whose set of causal predecessors is S. Note
that the direct path private keys exclude the root private key.

This Welcome message is sent encrypted under a public key which B has
designated for use in encrypting Welcome messages to them. This public
key could be a signed prekey that B previously uploaded to an untrusted
server, as in Signal [7].

To process the Welcome message, B uses (i) and (ii) to set their initial
state. B also stores (iii) so that they can decrypt the root private key
contribution of any state change messages concurrent to their Add message
(below), acting as if they were A, and combine those contributions with their
root private key using ?1. This is necessary because concurrent root private
key contributions will be combined into future root private keys using ?1 in
the usual way, but they are not included in the root private key in (ii).

A then sends an Add message to the group, including B, containing u
and a public key which B has designated for use as an initial leaf public
key. This public key could be a second signed prekey. Every user except B
processes u as a normal update. Every user, including B, then:

• Adjusts the tree structure to accomodate a new leaf for B while keeping
it left-balanced.

• Sets all key pairs on B’s direct path to blank, then sets B’s leaf’s
public key to that in the Add message. Note that the root is not set
to blank.

By our rules for blank nodes, the effect of any concurrent Update message
is to adjust nodes outside of B’s direct path as usual, including the root node,
while changes to nodes on B’s direct path will be overridden by the Add
message’s blank nodes. Thus we intuitively expect to get the usual post-
compromise security guarantee for such an Update message. Note that B
can decrypt the Update message’s contribution to the root key pair using
(iii) from the Welcome message.

An exceptional case is when B’s Add message changes a concurrently up-
dating user’s location in the tree, either because they convert the updating
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user’s old leaf into their new parent or because of concurrent Add messages
(see below). In this case, we adopt the rule that the updating user’s origi-
nally intended contribution to the root stands. That is, if the updating user
generated a new secret s and they were originally at depth n in the tree,
then the root key pair contribution is DPK(Hn(s)). We do this because all
users can compute Hn(s) in the usual way, while they may not be able to
compute Hn−1(s) if the updating user’s depth decreases to n− 1.

Concurrent Add messages work essentially the same as an Update mes-
sage concurrent to an Add message. The exception is if concurrent Add
messages attempt to insert multiple users at the same leaf node. We adopt
the rule:
• Users process concurrent Add messages in some fixed order, e.g., lexi-
cographically by name.

This works because neither the Add nor Welcome messages for a new user
include any information that is specific to the leaf where they are added.
Update messages which depend on an Add message may become nonsensical
due to concurrent Add messages, in that they do not send secrets to the
correct users, but any non-root key pairs affected by this will be overridden
by blanks from the concurrent Add messages. Note that every user can still
compute the root private key contribution from such an update.

4 Security Properties
Of course, Causal TreeKEM is useless if it is not secure. In this section, I’ll
try to informally motivate some of the security properties we want, although
these arguments should not be taken too seriously. We consider passive
network adversaries who also have the ability to compromise users, but
who cannot actively interfere except to delay message receipt. We assume
that users process state change messages in causal order regardless of the
adversary’s actions.

4.1 Post-Compromise Security

The post-compromise guarantee that we want is as follows. Let U be the set
of users who have been compromised before a given point in time. Suppose
there is a series of Update messages m1 < m2 < · · · < m|U | such that:
• Each mi was generated after the moment in which its author’s most
recent compromise occurred.

• The set of authors of m1, . . . , m|U | equals U .
There may be any number of intervening or concurrent updates. Then the
private keys in the ratchet tree of any user who has processed m|U | are
unknown to the adversary.
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Let us informally define some games to make our guarantee a bit more
precise, inspired by the proof of ART’s security [4]. In these games, we
assume that the root public key is never sent on the network, so that we can
reason about the root private key’s secrecy (see also Remark 2.4).

Let Advi denote the maximum over all polynomial-time adversaries A
of the advantage of A in Game i, i.e., the probability that A wins Game i
minus 1/2.

Definition 4.1. Let C be a set of user configurations, and let T be a con-
figuration. A set of users U is fresh at T w.r.t. C if there is a sequence of
Update messages m1 < m2 < · · · < mk in T such that for every A ∈ U and
every (A, S) ∈ C, there is an mi authored by A with mi /∈ S. A ratchet tree
node N is fresh at T w.r.t. C if the set of users with a leaf descended from
N is fresh w.r.t. C.

Game 1 (Security Game for Causal TreeKEM with Static Groups). Fix a
number of users n and a maximum number of Update messages M . The
challenger initializes a group of size n with random key pairs at each node
in the ratchet tree. The adversary makes a series of queries of the form:

• Send(A), where A is a user: Instruct A to generate an Update message,
apply it to their own state, and give it to the adversary.

• Recv(A, m), where A is a user, m is the output of some call to Send,
A has processed all of m’s causal dependencies, and A has not yet
processed m: Instruct A to process the Update message m.

• Reveal(A, S), where A is a user, S is a set of outputs from calls to Send
that form a configuration, and A has previously processed all messages
in S: Reveal the ratchet tree for the user configuration (A, S).

• Test(T ), where T is a set of outputs from calls to Send that form
a configuration: the challenger sets k0 to be the root private key of
T , sets k1 to be a uniformly randomly sampled private key, chooses
b ∈ {0, 1} uniformly at random, and returns kb.

• Guess(b′) where b′ ∈ {0, 1}: This terminates the game.

The adversary wins if they call Test exactly once, say with input T , they
guess b′ = b, the root node is fresh at T w.r.t. the set of all user configurations
revealed by the adversary, and they call Send at most M times. Otherwise,
they lose.

Remark 4.2. The adversary should also have the ability to compromise
the secrets contained in state change messages. From Causal TreeKEM’s
perspective, compromising such a secret is at most as bad as compromising
some user’s state immediately before and after sending the message, so we
will be satisfied with just Reveal queries.

10



Game 2. Same as Game 1, but the adversary must specify at the start of the
game the order in which they intend to make queries to Send and Recv, the
user configurations on which they will call Reveal, and the configuration
on which they will call Test. The inputs to Recv, Reveal, and Test are
expressed in terms of the calls to Send that will generate them. If the
adversary violates this specification, they lose.

In other words, the adversary must specify at the start of the game the
causal dependency graph of Update messages that they will construct, plus
the user configurations in the graph that they will reveal and the configu-
ration in the graph that they will guess. We refer to the messages in this
specification as abstract messages, since they represent Update messages but
have not yet had their random values filled in.

Lemma 4.3. There is a non-tight reduction from Game 1 to Game 2, prov-
ing that Adv1 is at most Adv2 multiplied by a (large) function of n and
M .

Proof Sketch. Let us be given an adversary A for Game 1 with parameters
n and M . We define an adversary A′ for Game 2 which first guesses the
required information, then plays as A. If their guess turns out be wrong,
they play a trivial strategy that wins with probability 1/2. The advantage
of A′ is that of A times the probability that their guess is correct, which is
the inverse of some (large) function of n and M .

Definition 4.4. Define a partial ratchet tree to be a tree in which every
node is labelled with a key pair, a public key, or null. Given two partial
ratchet trees T ,U with the same shape, define their product T ?U to be the
partial ratchet tree whose label at a node N is given by

(T ?U)N :=



(kT , KT ) ? (kU , KU ) if (kt, KT ) = TN , (kU , KU ) = UN are both key pairs
KT ?2 KU if one of TN ,UN is a public key,

the other is a public key or key pair,
and KT , KU are their public keys

TN if UN is null (TN may also be null)
UN if TN is null.

Given an Update message m, define the partial ratchet tree of m to be the
partial ratchet tree that has every key pair that m contributes (i.e., the key
pairs on its author’s direct path plus the root) and is null elsewhere in the
tree.

Game 3. Game 2 with two modifications:
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• The order that the adversary commits to must be a total order on
Update messages that all users agree on. That is, whenever the ad-
versary calls Send(A) and receives an Update message m, they must
call Recv(B, m) for all other users B before they call Send again.

• The adversary has an additional oracle:

– StarIn(T ), where T is a partial ratchet tree with the same shape
as the users’ ratchet trees and every node in T is labelled with a
key pair or null (not a public key): Instruct every user to update
their ratchet tree U by setting U ← U ? T .

For any choice of starting information I for Game 2, let Game 2.I denote
a modified version of Game 2 in which the adversary must specify starting
information I or lose, and let Adv2.I denote its advantage. We similarly
define Game 3.J and Adv3.J .

Note that any maximum-advantage adversary for Games 2 or 3 can be
converted into an adversary who deterministically chooses their starting
information, with the same advantage. Thus it suffices to reason about the
advantages of Games 2.I and 3.J as I and J vary.

Lemma 4.5. For any I with n users and ≤M Update messages, there is a
J with n users and ≤M Update messages such that there is a tight reduction
from Game 2.I to Game 3.J , proving that Adv2.I = Adv3.J .

Proof Sketch. Let us be given an adversary A for Game 2.I. We assume A
and I are such that A never trivially fails by violating rules such as freshness.

Let (P, <) be the partial order on abstract messages determined by I,
i.e., the causal dependency graph that A plans to construct. From I, we
can find a sequence of abstract messages a1 < a2 < · · · < ak in P that
witnesses the freshness of the configuration T on which A will call Test. Let
C = {a1, . . . , ak} ⊂ T . From the total order C, we can derive a sequence
of Send and Recv queries meeting the requirements of Game 3. Let J be
given by: the order of Send and Recv queries is that given by C; the Reveal
queries are those of I but with their configurations intersected with C; and
the Test configuration is C = C ∩ T .

We define an adversary A′ for Game 3.J . A′ poses as a challenger for
Game 2.I and plays against A, processing the queries of A′ as follows.

• Send(A): Let P ′ be the set of (abstract) messages generated by previ-
ous calls to Send. Let a be the unique abstract message authored by A
such that a /∈ P ′ but all of a’s causal predecessors are in P . (Unique-
ness holds because A always includes all of their prior messages as
causal predecessors of their next message.)
If a /∈ C, compute the tree T of public keys in the ratchet tree of the
configuration {m′ | a′ ∈ P, a′ < a, a′ is the abstract message for m′}.
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Then generate an Update message m with author A using public keys
from T , using a random secret, and give this message to the adversary.
If a ∈ C, let R ⊂ P ′ be the set of messages m′ for which A has called
Recv(A, m′). Let a′ be the predecessor of a in C, and let Q = {a′′ ∈
R | a′′ /∈ C, a′′ ≮ a′}. (In case a is the minimum element of C, we
set Q = R \C.) Note that by the previous case, A′ knows the private
keys in every key pair that appears in an Update message in Q, since
Q∩C = ∅. Let T2 be the product of all partial ratchet trees for Update
messages in Q. In Game 3.J , query StarIn(T2), then query Send(A)
and give its result to A.

• Recv(A, m), where A is a user, m is the output of some call to Send,
A has processed all of m’s causal dependencies, and A has not yet
processed m: If m was generated by a call to Send that reached the
second case above, query Recv(A, m) in Game 3.J .

• Reveal(A, S), where A is a user, S is a set of outputs from calls
to Send, and A has previously processed all messages in S: Query
Reveal(A, S∩C) in Game 3.J . Interpret the answer as a partial ratchet
tree T . Let T ′ be the ?-product of T with every partial ratchet tree
of an Update message in S \ C. Give T ′ to A.

• Test(T ), where T is a configuration: Query Test(C) in Game 3.J ; let
k be the result. Let T be the product of every partial ratchet tree of
an Update message in T \ C, and let l be its root private key. Give
k ?1 l to A.

• Guess(b′) where b′ ∈ {0, 1}: Query Guess(b′) in Game 3.J .

Essentially, we are using StarIn to simulate the effects of the messages
in P \C. Note that because ?1 is cancellative, the guess by A will be correct
if and only if the guess by A′ is correct. To fill in the proof, we would need
to carefully check that C, the input to Test, is fresh in Game 3.J because
T is fresh in Game 2.I, plus various other details.

Corollary 4.6. There is a tight reduction from Game 2 to Game 3, proving
that Adv2 ≤ Adv3.

Game 4. Game 2 with two modifications:

• The order that the adversary commits to must be a total order on
Update messages that all users agree on. That is, whenever the ad-
versary calls Send(A) and receives an Update message m, they must
call Recv(B, m) for all other users B before they call Send again.

• We use ordinary TreeKEM in place of Causal TreeKEM.
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Game 4 should be essentially the “security game for ordinary TreeKEM”,
but with the adversary constrained to choose their Update message order,
Reveal queries, and Test configuration at the beginning of the game. I
expect that any reasonable proof of TreeKEM’s security would imply that
Adv4 is negligible.

The only difference between Games 3 and 4 is that at various points in
time, each user replaces their ratchet tree with the ?-product of that ratchet
tree and some other partial ratchet tree. Sometimes this partial ratchet tree
is provided by an adversary through StarIn; sometimes it comes from past
state, since Causal TreeKEM processes Update messages using ? instead of
overwriting. Either way, because ?1 is cancellative, these products should
not affect which private keys are “secret” to an adversary. Thus I expect
that we could modify a proof that Adv4 is negligible to prove that Adv3 is
negligible, so that Causal TreeKEM is secure if ordinary TreeKEM is secure.

Remark 4.7. Since internal nodes have their public keys revealed, we can-
not reason about indistinguishability of their private keys from random. We
may need to instead make some computational hardness assumption about
?1, e.g., if it is hard for an adversary to compute y, then it is also hard to
compute x given x ?1 y. This follows from the cancellative property of ?1 if
it is easy to invert, since one can use x, x ?1 y, and an inversion algorithm
to compute y.

4.2 Forward Secrecy

In the discussion so far, we have implicitly assumed that users keep around
all of the state change messages they have received forever, so that they can
process arbitrarily delayed state change messages. In practice, users should
delete these messages after some amount of time and keep only the aggregate
state, i.e., the ratchet tree corresponding to some configuration that includes
all deleted messages. I expect that deleting old messages in this way will
provide forward secrecy, similar to how we achieve post-compromise security.

Note that there is a trade-off here between the degree of forward secrecy
and the amount of delay that we can tolerate. In applications with a single
central server, we can generally assume a delay of at most a few seconds,
but in applications that allow the group of users to partition and re-merge,
state change messages may be delayed for much longer.

4.3 Adding Users

The procedure for adding users is rather suspicious because it requires the
adder to give away a good deal of private key material to the new user. In
this section, we give informal evidence that this is not a serious concern.

First, we address “forward secrecy” with respect to the added user. This
means that the added user should not be able to read any communications
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that do not causally depend on their Add message.

Proposition 4.8. Suppose a user A adds a user B. Let S be a configuration
that does not include the Add message, and let s be the root private key of
S. Assume that the root private key contributions of the messages in S and
the group’s initial root private key are all independent and uniform random.
Then as a random variable, s is independent of the private keys in parts (ii)
and (iii) of B’s Welcome message.

Proof Sketch. First, write s = v ?1 w, where v is the group’s initial root
private key and w is the combined contribution of all messages in S. By
our independence assumption, v is independent of w and of part (iii) of B’s
Welcome message, since (iii) does not include any root private keys. Since v
is uniform random and ?1 is cancellative, regardless of w, s is independent
of (iii).

Next, let x be the root private key in part (ii) of the Welcome message.
Write x = y ?1 z, where y is the root private key contribution of the Update
message u used to generate the Welcome message, and z is the root private
key of the preceding configuration. By our independence assumption and
the assumption that S does not include the Add message, y is independent
of z and s. Then x is independent of s, i.e., s is independent of the private
key in (ii).

Finally, by the same reasoning as in the first paragraph, the private
key x in part (ii) is independent of part (iii). Hence s, (ii), and (iii) are
mutually independent, so s is independent of the private keys in (ii) and
(iii) considered together.

Thus informally, B can only determine s by breaking Causal TreeKEM.
Note that our assumption on independent uniform randomness may fail if
H is imperfect or there are hash collisions. Also, this proposition does not
help us if B compromised the group’s initial root private key at some point;
in principle, we should be able to prove a similar security result even if B
has previously compromised some private keys.

A second concern with our protocol for adding users is its interaction
with forward secrecy and post-compromise security: what happens if an
adversary who already possesses some secret information gets hold of a Wel-
come message, either by compromising B or colluding with them? Note that
such a compromise is at most as bad as if the adversary compromised A. In
most update schedules, I expect that all users will store roughly the same
amount of old state, for the purpose of decrypting late messages. Thus an
adversary who compromises B learns at most as much as they would from
compromising any other user. This seems acceptable.

In addition, compromising B does not give the adversary any private
keys from the Add message’s key update u, except the resulting root private
key. Hence it appears that if B is compromised, revealing the Welcome
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message, then only B has to do a key update, not A. Thus we still get
intuitive post-compromise security guarantees.

Finally, there may be issues if prekeys are reused in different conver-
sations. Prekey reuse should be avoided if possible, but we cannot assure
it asynchronously. If A gives away their initial leaf private key in an Add
message in one conversation, and they are still using that leaf private key in
another conversation, then they should send an Update message in the sec-
ond conversation. Also, it is important that users designate which prekeys
are for initial leaves and which are for Welcome messages, as we have de-
scribed. If A gives away an initial leaf private key in one conversation that
doubles as a Welcome encryption key in a second conversation, then the
recipient automatically compromises A’s initial state in that second conver-
sation, allowing them to read early messages.

5 Miscellaneous

5.1 Elliptic Curve Diffie-Hellman Issues

The ? operator for Diffie-Hellman keypairs described in Section 2 does not
directly work with well-known elliptic curve DH groups, such as EC25519,
due to issues with cofactors and clamping. Richard Barnes pointed this
out on the MLS list originally [1] and would know more about it, but my
impression is that it can be worked around (perhaps with a different, less
well-studied curve).
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