
Forward Secrecy of TreeKEM
Joël Alwen - Wickr

Sandro Coretti-Drayton - IOHK

Yevgeniy Dodis - NYU

Yiannis Tselekounis - NYU



Party 1 executes update

sk0, 𝑠1 ← 𝐻(𝑠0)

for random 𝑠0
and PRG 𝐻

sk1, 𝑠2 ← 𝐻(𝑠1)

sk2, 𝑠3 ← 𝐻(𝑠2)

𝐼 ← 𝑠3
Update secret: 𝐼 = 𝑠3

info about 𝑠1

info about 𝑠2

info about 𝑠3

Updates in TreeKEM



Party 1 executes update

sk0, 𝑠1 ← 𝐻(𝑠0)

for random 𝑠0
and PRG 𝐻

sk1, 𝑠2 ← 𝐻(𝑠1)

sk2, 𝑠3 ← 𝐻(𝑠2)

𝐼 ← 𝑠3
Update secret: 𝐼 = 𝑠3

Updates in TreeKEM

𝐸(pk𝑐 , 𝑠3)

𝐸(pk𝑏, 𝑠3)

𝐸(pk𝑎 , 𝑠3)

public keys at 
co-path nodes



After Party 1’s update

sk2

sk1

sk0

Important for Forward Secrecy: as 
soon as update secret recovered 
and processed, delete it from the 

state



An example illustrating issues with TreeKEM’s Forward Secrecy



Eight group members Internal nodes: 
blank initially

Leaves: InitKeys



Party 1 executes update

sk0, 𝑠1 ← 𝐻(𝑠0)

for random 𝑠0
and PRG 𝐻

sk1, 𝑠2 ← 𝐻(𝑠1)

sk2, 𝑠3 ← 𝐻(𝑠2)

𝐼 ← 𝑠3
Update secret: 𝐼 = 𝑠3

information about 𝑠1
encrypted under secret 
key at this leaf



Party 1 executes update

sk0, 𝑠1 ← 𝐻(𝑠0)

for random 𝑠0
and PRG 𝐻

sk1, 𝑠2 ← 𝐻(𝑠1)

sk2, 𝑠3 ← 𝐻(𝑠2)

𝐼 ← 𝑠3
Update secret: 𝐼 = 𝑠3

information about 𝑠2
encrypted under secret 
keys at these leaves



Party 1 executes update

sk0, 𝑠1 ← 𝐻(𝑠0)

for random 𝑠0
and PRG 𝐻

sk1, 𝑠2 ← 𝐻(𝑠1)

sk2, 𝑠3 ← 𝐻(𝑠2)

𝐼 ← 𝑠3
Update secret: 𝐼 = 𝑠3

information about 𝑠3
encrypted under secret 
keys at these leaves



1 0 0 0 0 0 0 0

1 † † †

1 †

1From now on: 
just write epoch 

numbers
• † for blank nodes
• 0 for nodes with InitKeys



1 0 0 0 2 0 0 0

1 † 2 †

1 2

2

Party 5 executes update



1 0 0 0 2 0 3 0

1 † 2 3

1 3

3

Party 7 executes update

Question: Is update secret of 
epoch 3 forward secret?



1 0 0 0 2 0 3 0

1 † 2 3

1 3

3

3

3

3

Information about 
epoch-3 update 

encrypted under keys 
of nodes with 3

Identifying Bombs
“Bomb”= Key that lets 

adversary recover 
update secret for 

epoch 3.



1 0 0 0 2 0 3 0

1 † 2 3

1 3

3

3

3

3

Detonating Bombs = Leaking Key

For example: by corrupting user 5 or user 6, 
the secret key here allows to recover the 

update secret for epoch 3

detonates

Information about 
epoch-3 update 

encrypted under keys 
of nodes with 3



1 0 0 0 4 0 3 0

1 † 4 3

1 4

4

3

3

3

Defusing Bombs = Refreshing Key

However: by having user 5 or user 6 
perform an update, secret key here no 

longer helps recovering update secret of 
epoch 3

defused

Information about 
epoch-3 update 

encrypted under keys 
of nodes with 3



1 0 0 0 2 0 3 0

1 † 2 3

1 3

3

3

3

32

But there are more bombs!Information about 
epoch-3 update 

encrypted under keys 
of nodes with 3

Information about 
epoch-2 update 

encrypted under keys 
of nodes with 2

By corrupting user 6, learn epoch-2 sk at 
parent node of user’s leaf. With that key, 

recover epoch-3 update secret.



1 0 0 0 2 0 3 0

1 † 2 3

1 3

3

3

3

32
1 1 1

But there are more bombs!Information about 
epoch-3 update 

encrypted under keys 
of nodes with 3

Information about 
epoch-2 update 

encrypted under keys 
of nodes with 2

Information about 
epoch-1 update 

encrypted under keys 
of nodes with 1

By corrupting users 2,3 
or 4, learn epoch-1 sk
at ancestor nodes of 

users’ leaves. With that 
key, recover epoch-3 

update secret.



Number of Bombs (Full Tree, No Blanks)

𝑛𝑖: number of bombs with tree height 𝑖

𝑛1 = 1

𝑛𝑖 = 𝑖 +෍

𝑗=1

𝑖−1

𝑛𝑗𝑛 > 1:

𝑛𝑖 = 2𝑖 − 1

Half of the 
nodes in the 

tree have 
bombs!

Solves to:



Number of Bombs (Derivation)

𝑛𝑖: number of bombs with tree height 𝑖

𝑛1 = 1

𝑛𝑖 = 𝑖 +෍

𝑗=1

𝑖−1

𝑛𝑗𝑛 > 1:
𝑛2 = 3

𝑛 > 2: 𝑛𝑖 − 𝑛𝑖−1 = 1 + 𝑛𝑖−1

⟺ 𝑛𝑖 = 1 + 2𝑛𝑖−1

⟺ 𝑛𝑖 = 1 + 2(1 + 2𝑛𝑖−2)

⟺ 𝑛𝑖 = 1 + 2(1 + 2(1 + 2𝑛𝑖−3))

⟺ 𝑛𝑖 = 1 + 2 + 4 + 8𝑛𝑖−3

⟺ 𝑛𝑖 = ෍

𝑘=0

𝑖−3

2𝑘 + 2𝑖−2𝑛2

= ෍

𝑘=0

𝑖−3

2𝑘 + 3 ⋅ 2𝑖−2

= 2𝑖−1 + 2 ⋅ 2𝑖−2 − 1 = 2𝑖 − 1



Party 1 executes update

sk0, 𝑠1 ← 𝐻(𝑠0)

for random 𝑠0
and PRG 𝐻

sk1, 𝑠2 ← 𝐻(𝑠1)

sk2, 𝑠3 ← 𝐻(𝑠2)

𝐼 ← 𝑠3

Re-randomized TreeKEM (RTreeKEM)

𝐸 pk𝑐 , 𝑠3 = (𝑐, pk′𝑐)

𝐸 pk𝑏, 𝑠3 = . . .

𝐸 pk𝑎 , 𝑠3 = . . .

𝐷 sk𝑐 , 𝑐 = (𝑠3, sk′𝑐)

Updatable PKE: each 
encryption/decryption 

produces new pk’/sk’ s.t.
even given sk’, messages 

encrypted under pk remain 
secret



Leaves: InitKeys

Additionally write version 
number of key (starting with .0 
and incrementing after every 

rerandomization)

Example with RTreeKEM

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Epoch numbers (as before):
• † for blank nodes
• 0 for nodes with InitKeys

† † † †

† †

†



1.0 † † †

1.0 †

1.0

Example with RTreeKEM

1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Party 1 executes update



Party 5 executes update

1.0 † 2.0 †

1.1 2.0

2.0

1.0 0.1 0.1 0.1 2.0 0.2 0.2 0.2

Example with RTreeKEM



Party 7 executes update

1.0 † 2.1 3.0

1.2 3.0

3.0

1.0 0.1 0.1 0.1 2.0 0.2 3.0 0.3

Question: Is update secret of 
epoch 3 forward secret?

Example with RTreeKEM



Party 7 executes update

1.0 † 2.1 3.0

1.2 3.0

3.0

1.0 0.1 0.1 0.1 2.0 0.2 3.0 0.3

Yes! Versions (0.2,2.0, and 1.1) 
of keys on co-path used to 
encrypt information about 

epoch-3 update no longer in 
state!

Example with RTreeKEM


