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Abstract—Multiscale entropy (MSE) analysis is a method of 
measuring the complexity of time series across multiple time 
scales. The complexity of traffic flow time series generated by 
NS model is analyzed with MSE. The results show that both of 
the randomization probability and vehicle density affect the 
complexity of time headway. And when we focus on large time 
scale, we found that with the same randomization probabilities, 
the complexity is at a stable and high level in higher vehicle 
density scenarios. However, with the same randomization 
probabilities, the complexity will decrease as time scale 
increases in lower vehicle density scenarios. 

Keywords-complexity analysis; traffic flow; cellular 
automata; multiscale entropy 

I.  INTRODUCTION 
Transportation system is a huge and complex system. 

Complexity of traffic flow is very important to explore the 
character of transportation system and then can be used in 
Intelligent Transportation System (ITS) to manage traffic 
flow. How to manage traffic flow largely depends on the 
ability to predict traffic flow. 

Time series analysis methods can be used to analyze the 
complexity of traffic flow. However, there is no consensus 
definition of complexity [1]. Complexity can be defined as 
the difficulty in predicting the future behavior of time series 
and can be measured by entropy-based methods. Traditional 
entropy measures quantify only the regularity or 
predictability of time series on a single scale [1], and ignore 
the temporal structural richness. Costa etc. proposed a new 
complexity metric called multiscale entropy to analyze the 
time series across multiple time scales [1].  

The traffic time series used in this paper are generated by 
a traffic flow model called NS model, which is based on 
Cellular Automata (CA). In traffic flow modeling, CA is 
very useful for microscopic modeling. The update is decided 
by the current status and a set of rules. With simple rules, CA 
can simulate the interaction of cells and produce complex 
behavior. 

The remainder of this paper is organized as follows: the 
related works are presented in Section II. In Section III, the 
complexity of traffic flow time series is analyzed and the 
results are discussed. Finally, conclusion and future works 
are presented. 

II. RELATED WORKS 

A. Multiscale Entropy 
Multiscale entropy (MSE) analysis [1] is a method of 

measuring the complexity of time series. Before introducing 
MSE, we should describe approximate and sample entropies 
because sample entropy is the basis of MSE. 

Approximate entropy can be defined as follows [2]. For a 
discrete random variable X taking values {x1, ..., xN}, we 
form the vectors x(t)=(u(t), …, u(t+m-1)) where m is a 
positive constant and Nm∈ . Each of the vectors has m 
consecutive values from the original time series and starts 
from u(t). The distance d(x(s), x(t)) is defined as  
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The parameter r specifies the tolerance for two sequences 
to be considered similar. Then we compute 
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The approximate entropy can be defined as  
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However, when we consider time series with finite length 
N, ApEn(m,r) can be approximated as 

 ).()(),,( 1 rrNrmApEn mm +Φ−Φ=  (5) 

For parameter m and r, when m=2 and r=0.1~0.25SD, 
the value of ApEn(m,r,N) has minimal dependence on N, 
where SD is the standard deviation of x(t).  
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To exclude self-matches in ApEn(m,r,N), Richman and 
Moorman [3] proposed sample entropy. Sample entropy is 
defined as  

 )),(/)(ln(),,( 1 rBrBNrmSampEn mm+−=  (6) 

where )(1 rBm+  and )(rBm  are empirical probabilities of m+1 
and m matches to the template vector, respectively [4]. 

Multiscale entropy analysis is defined based on sample 
entropy. Given time series, we can construct multiple coarse-
grained time series by averaging the data points within non-
overlapping windows of increasing length τ  [1]. τ  means 
the scale factor, and the length of each coarse-grained time 
series is τ/N .For scale 1, the coarse-grained time series is 
the original time series. For each coarse-grained time series, 
we can calculate ),,( NrmSampEn , and plot the results as a 
function of scale factor τ . The time series is more complex 
if the values of multiscale entropy are higher. 
B. Complexity Measure of Traffic Flow Time Series 

To describe the complexity of traffic flow, many metrics 
are used.  

Lyapunov exponent [5] and fractal dimension [6] are 
proposed to analyze the complexity of traffic flow. However, 
these methods face the problem that the computation of such 
metrics requires rather large amount of volume of time series 
and has difficulties in real-time implementation. Thus 
Lempel-Ziv method, approximate entropy, and statistical 
complexity method are used to quantify complexity. 

In [7], the Lempel-Ziv complexity, statistical complexity, 
approximate entropy are used to analyze the complexity, as 
well as the combining the criterion methods of chaos & 
fractal. Approximate entropy is measured to show the 
relationship between traffic flow complexity and traffic 
conflict [8].  

For application of statistical complexity method in 
complexity measurement, Xu etc. analyzed the relationship 
between statistical complexity and traffic conflict rate on 
urban road with traffic flow on three typical road sections in 
Nanjing [9]. Yu etc. analyzed how the chaos of traffic flow 
simulated on a single lane with two-classification vehicles is 
influenced by the density of traffic flow and the discrete of 
following-velocity with approximate entropy and statistical 
complexity [10]. 

III. COMPLEXITY ANALYSIS OF TRAFFIC FLOW TIME 
SERIES 

A. NS Model of Traffic Flow and Configuration 
NS model is a typical one-dimensional traffic model 

based on CA, which is proposed by Nagel and 
Sehreckenberg [11]. In NS model, each site has two status, 
one for occupied by one vehicle, and the other for empty. 
The velocity of each vehicle is an integer between zero and 

maxv . The rules are listed below: 
1) Acceleration: the velocity v  of a vehicle will be 

advanced as 1+→ tt vv , if 
maxvvt < ; 

2) Slowing down: the vehicle will reduce its speed tv  to 
gap , if the vehicle sees the next vehicle ahead and 

tvgap < , 
where gap  is the distance between them. 

3) Randomization: with probability p, the vehicle will 
reduce its speed as )0,1max( −→ tt vv ; 

4) Car motion: each vehicle will advance its position as 
ttt vxx +→ . 

The parameters of NS model are: the circle lane length L, 
the vehicle density densep , the maximum of velocity maxv , the 
randomization probability p, and the time steps timeStep. In 
our simulation, the configurations are: ;5000=L  

};4.0,3.0,2.0,1.0,05.0{=densep  ;5max =v  };3.0,2.0,1.0,0{=p  
.150000=timeStep  p=0 means there is no randomization. 

We use the time headway as the time series, which are 
recorded after the 1000th time step. The timeStep is 
configured to 150000 to guarantee adequate length of the 
recorded time series for analysis. Thus we can get 20 time 
series. The time headway is observed at the 100th site. The 
selected data are shown in Fig. 1. 
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(a) Traffic flow time series with pdense=0.05 and p=0. 
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(b) Traffic flow time series with pdense=0.2 and p=0. 
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(c) Traffic flow time series with pdense=0.3 and p=0.2. 
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(d) Traffic flow time series with pdense=0.4  and p=0.3. 

Figure 1.  The selected traffic flow time series. 

We plot 1000 data of each time series in Fig. 1 because 
total number of each original time series is too large. And the 
maximum of y-axis in sub-figure (b) is 10 because the 
sample values are too low to be plotted clearly if the 
maximum of y-axis is set to 30. 

B. Analysis Results 
The configurations of MSE are: m=2, r=0.15SD, �=20. 

The MSE results for scenarios with same vehicle densities 
and different randomization probabilities are shown in Fig. 2. 
With lower vehicle densities, such as 0.05 and 0.1, the 
deceleration probability due to “Slowing down” is low 
because the vehicles are in free phase. And the complexity 
increases with the randomization probability increase, which 
means the increase of randomization probability will cause 
the increase of complexity of time headway. 
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(a) MSE results with pdense=0.05 and p={0,0.1,0.2,0.3}. 
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(b) MSE results with pdense=0.1 and p={0,0.1,0.2,0.3}. 
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(c) MSE results with pdense=0.2 and p={0,0.1,0.2,0.3}. 
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(d) MSE results with pdense=0.3 and p={0,0.1,0.2,0.3}. 
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(e) MSE results with pdense=0.4 and p={0,0.1,0.2,0.3}. 

Figure 2.  MSE results for scenarios with same vehicle densities and 
different randomization probabilities. 

However, with higher vehicle densities, such as 0.3 or 0.4, 
vehicles are in congestion phase. When the randomization 
probability is 0.1, the complexity is the minimum as a whole. 
With higher or lower randomization probabilities, the 
complexity will increase. If the randomization probability is 
high, the deceleration probabilities of “Slowing down” of 
vehicles behind will increase. And if the randomization 
probability is low, the deceleration probabilities of “Slowing 
down” of the car itself will increase. Especially, we should 
note that with the vehicle density of 0.4, the differences of 
complexities with different randomization probabilities are 
not distinct, which means the randomization probability is 
not the major reason of complexity. In general, with high 
vehicle densities, the major reason of increased complexity 
of time headway is the operation of “Slowing down”.  

Also, we compared the results for scenarios with same 
randomization probabilities and different vehicle densities, 
as show in Fig. 3. With zero randomization probability, the 
MSE appears the lowest value when the vehicle density is set 
to 0.2, which means the complexity is the minimum with 
such configurations. The result agrees with that in [12]. With 
other scenarios, the complexity with higher vehicle density is 
more than that with lower pdense. 

With non-zero randomization probability, the MSE 
appears stable and high level when the time scale � increases 
in higher pdense scenarios, which means the complexity can 
not be smoothed and the time headway is difficult to be 
predicted on large time scale. However, the values of MSE 
decrease with the increase of time scale � in lower pdense 
scenarios, which means on large time scale, the time 
headway is easy to be predicted. 

IV. CONCLUSION AND FUTURE WORKS 
In this paper, the complexity of traffic flow time series 

generated by NS model is analyzed with multiscale entropy 
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method. The results show that both of the randomization 
probability and vehicle density affect the complexity of time 
headway. When focusing on large time scale, we found that 
with the same randomization probabilities, the complexity is 
at a stable and high level in higher pdense scenarios. However, 
with the same randomization probabilities, the complexity 
will decrease as time scale increases in lower pdense scenarios. 
The future works include analyzing the impact of “Slowing 
down” and “Randomization” on the complexity of traffic 
flow, analyzing the complexity generated by other traffic 
flow models, and comparing the complexity of realistic and 
synthetic traffic flows with multiscale entropy method to 
validate the models. 
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(a) MSE results with pdense={0.05,0.1,0.2,0.3,0.4} and p=0. 
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(b) MSE results with pdense={0.05,0.1,0.2,0.3,0.4} and p=0.1. 
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(c) MSE results with pdense={0.05,0.1,0.2,0.3,0.4} and p=0.2. 
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(d) MSE results with pdense={0.05,0.1,0.2,0.3,0.4} and p=0.3. 

Figure 3.  MSE results for scenarios with same randomization 
probabilities and different vehicle densities. 
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