
pNFS with IPv6

The discussion was related to some findings during the
interop tests of pNFS file layout with IPv6.

The MDS and DS’s were configured with both IPv6 and IPv4 IP
addresses as well as the clients. The mount and MD
operations were performed over the IPv6 but we noti ced that
the I/O operations were done over IPv4. When we con figured
the DS to support only IPv6 the clients hang.

Chuck notes that a couple of things need to be cons idered:

a) On non-pNFS mounts, clients are able to force a

particular transport and protocol family choice via the
"proto=" mount option. I think some in the communi ty
might prefer to retain that ability for pNFS, but I
haven't considered the implications carefully.

Trond opinion is that when talking to a single serv er, this
makes partial sense (it is mainly about making the
transition from non-auto-negotiating NFSv2/v3 to au to-
negotiating NFSv4 easy). When talking to an NFSv4.1
metadata server plus a myriad pNFS data servers, it makes
less sense. There is no commitment to provide that kind of
functionality to Linux administrators at this point . Not
until someone can show an usecase where it makes se nse to
override the automatic probing.

b) Clients should not be _required_ to use the same

transport and protocol family for the DS and MDS. To
wit: for pNFS file mode, RDMA will probably be
appropriate for DS activity, but may not be support ed
for MDS operations.

Trond argued that the protocol allows the server to
advertise an array of struct netaddr4 for each DS. The
struct netaddr4 contains both a netid and a univers al
address. The client may then negotiate RDMA upon se tting up
the session, if the data server supports it.

Currently, the MDS servers can return only one IPv4 and one
IPv6 address per DS. Bruce suggested using multipat h to
return a richer list that could contain more inform ation.
Others in the room thought that was a good suggesti on.

But this is not a protocol limitation. It is a limi tation
of the current generation of servers implementation .

If the server returns a list, perhaps the list shou ld be
priority ordered from the server's point of view, a nd
perhaps there should be an RFC-proscribed algorithm for the
client to choose which address and transport to use for its
DS operations.

However, client implementations should be free to i gnore
the server's ordering. The most reasonable thing to do is
to have them auto-probe based on the server's order ing.
Anything else is likely to require us to set up an extra
user interface in order to determine policy. Curren tly
there is no commitment of the clients to do this un til we
hear valid usecases.

Sorin’s usecase: have the servers return a list con taining
addresses in both protocol families; disable one se t of
families on the DSes. In this case, it was the fam ily that
was at the top of the server's list. The current c lient
implementations do not attempt to discover a workin g
connection to the DSes by walking that list.

Trond explained that in the current implementation if the
DS supports only IPv6 the client will hang. In the current
implementation the Linux client will access the DS only
using IPv4. The reason is that the IP address is al so
included in the layout received by the client from the MDS.
If the DS IP sent to the client is IPv4 one then th e client
is able to perform the I/Os to the DS. Today the se rver
implementation sends only one IP in the layout for each DS
from the IP addresses list. If the MDS selects the IPv4
first the client will perform I/Os to the DS. But i f the
MDS sends IPv6 in the layout the client hangs and i t
doesn’t retry to the send the I/O to the MDS. This is
simply missing functionality in the current Linux c lient
implementation not a protocol issue.

In the previous cthon we tested IPv6 with pNFS bloc k server
only and it worked well as the I/O’s are done to SC SI
devices via iSCSI target that supports any IP that the
client uses and as such all the MD operations were done to
the MDS using the IPv6 the client mounted IPv6. Thi s is not
same case with the file layout that includes the IP in the
layout explicitly.

As a result of these findings we discussed the corr ect
behavior according to the RFC will be three fold:

- if the client cannot access the DS using the IPv6
address it should fall back to use IPv6 on MDS

- if the DS supports both IPv4 and IPv6 and the clien t
can mount the DS using IPv6 it should be able to us e
IPv6 for I/O to DS’s

- the client will mount using IPv6 the MDS but there is
no guarantee about what IP will use to access the D S

Currently the server implementations are such that they
send only one IP in the layout using the list of an nounced
IP’s of the DS’s. As a result of the fact that the client
only uses a certain IP address creates a problem if the
layout has an address not supported by the client. There is
no way to find out if the client can access a DS us ing a
certain type of IP to the MDS. The result (in Linux) is
that if the layout contains a IPv4 address it works and if
not it doesn’t work.

Chuck and Bruce proposed to recommend the servers t o send a
list of IP addresses that the DS’s support and the client
will select the one it supports. An alternative sol ution is
for the client to do a layoutreturn with connectivi ty
error.

Trond does not think that any of this is a real pro blem.
These are limitations that we deliberately imposed on
ourselves in order to be able to ship pNFS faster. We will
fix them up when we're done with integrating the ba sic code
into our respective kernels.

In conclusion we could modify/enhance the 4.1 proto col to
include implementation recommendations to either in cluding
a list of IPs of each DS or use a layoutreturn and a new
error case similar to the Permission Access draft t o
communicate to the server the preferred IP for the client
and the server to resend the layout using the prefe rred IP
address for the client if there are multiple IP typ es. The
problem can become more complicated if the client i s using
session trunking and/or clientid trunking when DS’s support
multiple IP types.

