LAYOUTCOMMIT for pNFS file

Fall 2010 Bakeathon

October 4, 2010
Dave Noveck



Outline (Talk + Sequel)

 Fundamentals of LAYOUTCOMMIT
— Why is it there?
— What problems does it solve?

e LAYOUTCOMMIT (for file) details
— One approach (i.e. mine)

e Going forward
— Getting group agreement (on something)
— Clarifying/updating documents



Basic pNFS Issue

 Fundamental pNFS premise
— PNFS splits data and metadata
— But, changing data requires metadata change
» E.g. size, modified time, change
o Alternative responses
— Give up on pNFS premise
o Only truly principled response :-)

» But there is this thing called performance
* And the issue is small, we assure ourselves. (And it really is)

— Look in designers’ back of tricks (See later slides)



Things to keep in mind

e Solution must support all layout types
— Including those not invented yet
— Lots of people say “#3$%#, gimme a beak”

e Update semantics need to be considered

— Perfect instantaneous coherence is terrific
 May be unbearably complicated/expensive
e Most applications don’'t need that
o Writer knows he wrote it

e Others are not synchronized with writer (so who
cares?)



Some Important Disagreements

W N

ok

Big issue about cost of LAYOUTCOMMIT
Don’t worry it’s trivial (or can be made so)

May be significant so protocol should define minimum
needed

Relation between COMMIT and LAYOUTCOMMIT
Must do after each COMMIT
Or set of COMMITS

Must do LAYOUTCOMMIT before flushing written pages
from cache.

Disagreement: what is the reason for all that?
Note that Sync. WRITE equal Async. WRITE plus COMMIT



Data server responsibility?

 Require DS to update MDS appropriately
— What does “appropriately” mean
— WG could spend a while figuring out
— “rough consensus” might never happen
— Won't work for pNFS block

e Client is to update MDS appropriately
— Thus is born LAYOUTCOMMIT
— Still have issue of “appropriately”



LOC for file: Structural Issues

e For pNFS block, LAYOUTCOMMIT
cannot be avoided

 For pNFS file, it is more like an
optimization

e Tend to think of LAYOUTCOMMIT as
license for lack of attribute coherence

—Not wrong but not only way to think
about It



LOC for file: Practical issues

e When must client do 1t?

e What If client doesn’t?
— Relates primarily to client/network failure

* Role of CLOSE-to-OPEN consistency
— Part of the protocol?

— Can clients get more consistency?
— Are they allowed to get by on less?



LOC for file: Start with Proposal

 Need to start discussion somewhere
— Will offer my approach
— As a way to start discussion
— Even though | know my approach must be right :-)

e Basic approach:
— Use optimization paradigm
— C-t0-O consistency is a common choice

* Not a requirement
» But is default behavior (client and network failure)



LOC for file: My Answers (1)

e When must client do 1t?

— Whenever client wants
— On CLOSE?

e |f client want to?
e Or treat a set of OPEN/CLOSESs as a unit
« Up to client
o Server MAY do attribute updates on
CLOSE

— But not a requirement



LOC for file: My Answers (2)

e What If client doesn’t?
— Server MAY update attributes based on 10
— Coherent distributed FS will work

— No requirement to not update based on
absence of LOC

* Role of CLOSE-to-OPEN consistency

— Not part of the protocol
— Clients can get more consistency or less.



LOC for file: My Answers (3)

e Servers (as a unit) MUST provide for client
unable to do LOC (or can’t see it if we did)
— Don’t know if he would have

— Assume he would have, LOC equivalent
 OPEN lost due to lease expiration
 Client reboot

e What about DS-MDS disconnect?

— MUST assume worst-case: if any write done to DS,
LOC-equivalent done

— MDS must know about LOC-pending state before it
becomes effective



Additional Issue

Periodic LAYOUTCOMMIT's required
Suppose a file open for days/weeks.
Periodic WRITES

If no LAYOUTCOMITSs, attributes out of
date

Is there a need/requirrment for period
LAYOUTCOMMITSs In this case

— What would the frequency be?
— Lease time?



After

Questions, criticism, discussion
Subseqguent discussion on list
Try to reach Consistent sense of the group

Document possibilities
— Errata
— Short internet draft clarifying/correcting RFC

— Decide spec is OK

e And it only needs an I-D with implementation
advice




