Re: [Ntp] Antwort: Re: A simpler way to secure PTP

Joachim Fabini <Joachim.Fabini@tuwien.ac.at> Tue, 11 May 2021 07:59 UTC

Return-Path: <joachim.fabini@tuwien.ac.at>
X-Original-To: ntp@ietfa.amsl.com
Delivered-To: ntp@ietfa.amsl.com
Received: from localhost (localhost [127.0.0.1]) by ietfa.amsl.com (Postfix) with ESMTP id 40D823A15F6 for <ntp@ietfa.amsl.com>; Tue, 11 May 2021 00:59:25 -0700 (PDT)
X-Virus-Scanned: amavisd-new at amsl.com
X-Spam-Flag: NO
X-Spam-Score: -1.897
X-Spam-Level:
X-Spam-Status: No, score=-1.897 tagged_above=-999 required=5 tests=[BAYES_00=-1.9, NICE_REPLY_A=-0.001, RCVD_IN_DNSWL_BLOCKED=0.001, SPF_HELO_NONE=0.001, SPF_NONE=0.001, URIBL_BLOCKED=0.001] autolearn=unavailable autolearn_force=no
Received: from mail.ietf.org ([4.31.198.44]) by localhost (ietfa.amsl.com [127.0.0.1]) (amavisd-new, port 10024) with ESMTP id J-vMBM1XeB6t for <ntp@ietfa.amsl.com>; Tue, 11 May 2021 00:59:20 -0700 (PDT)
Received: from secgw1.intern.tuwien.ac.at (secgw1.intern.tuwien.ac.at [IPv6:2001:629:1005:30::71]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by ietfa.amsl.com (Postfix) with ESMTPS id 4F2A63A15F7 for <ntp@ietf.org>; Tue, 11 May 2021 00:59:20 -0700 (PDT)
Received: from totemomail (localhost [127.0.0.1]) by secgw1.intern.tuwien.ac.at (8.14.7/8.14.7) with ESMTP id 14B7xFhS011654; Tue, 11 May 2021 09:59:15 +0200
Received: from localhost ([127.0.0.1]) by totemomail (Totemo SMTP Server) with SMTP ID 93; Tue, 11 May 2021 09:59:14 +0200 (CEST)
Received: from edge19a.intern.tuwien.ac.at (edge19a.intern.tuwien.ac.at [IPv6:2001:629:1005:30::45]) by secgw1.intern.tuwien.ac.at (8.14.7/8.14.7) with ESMTP id 14B7xDsX011618 (version=TLSv1/SSLv3 cipher=ECDHE-RSA-AES256-GCM-SHA384 bits=256 verify=FAIL); Tue, 11 May 2021 09:59:14 +0200
Received: from mbx13c.intern.tuwien.ac.at (128.130.30.63) by edge19a.intern.tuwien.ac.at (128.130.30.45) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384) id 15.2.858.5; Tue, 11 May 2021 09:59:12 +0200
Received: from [128.131.226.46] (128.131.226.46) by mbx13c.intern.tuwien.ac.at (2001:629:1005:30::63) with Microsoft SMTP Server (TLS) id 15.0.1497.2; Tue, 11 May 2021 09:59:11 +0200
To: <kristof.teichel@ptb.de>, Doug Arnold <doug.arnold=40meinberg-usa.com@dmarc.ietf.org>
CC: Miroslav Lichvar <mlichvar@redhat.com>, NTP WG <ntp@ietf.org>, "Daniel Franke" <dfoxfranke@gmail.com>
References: <AM7PR02MB576597311CBC1EC81F961FB4CF549@AM7PR02MB5765.eurprd02.prod.outlook.com> <CAJm83bCpio5WwigY6nc9Y0Gt_XSdjUV=sHUz04dOQ0zELPwZxw@mail.gmail.com> <YJkrFjnRPJJHz9da@localhost> <AM7PR02MB57657C935D0E94D223B1D703CF549@AM7PR02MB5765.eurprd02.prod.outlook.com> <CAJm83bCRMJr4V59m97CUtOnF8Dbsg=pGPTD=n359imxUByJhVg@mail.gmail.com> <OFED5B2865.344FE7AB-ONC12586D1.005DE2E1-C12586D1.005DE2E2@ptb.de>
From: Joachim Fabini <Joachim.Fabini@tuwien.ac.at>
Message-ID: <3b5d7881-2cbb-02f4-30d4-4b9627a6a18b@tuwien.ac.at>
Date: Tue, 11 May 2021 09:59:10 +0200
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Thunderbird/78.8.1
MIME-Version: 1.0
In-Reply-To: <OFED5B2865.344FE7AB-ONC12586D1.005DE2E1-C12586D1.005DE2E2@ptb.de>
Content-Type: text/plain; charset="utf-8"; format=flowed
Content-Language: en-US
X-ClientProxiedBy: mbx13b.intern.tuwien.ac.at (2001:629:1005:30::62) To mbx13c.intern.tuwien.ac.at (2001:629:1005:30::63)
Content-Transfer-Encoding: quoted-printable
X-MIME-Autoconverted: from 8bit to quoted-printable by secgw1.intern.tuwien.ac.at id 14B7xDsX011618
Archived-At: <https://mailarchive.ietf.org/arch/msg/ntp/9kaaYjAdZw5NVn4UM3aSUf6hNZk>
Subject: Re: [Ntp] Antwort: Re: A simpler way to secure PTP
X-BeenThere: ntp@ietf.org
X-Mailman-Version: 2.1.29
Precedence: list
List-Id: <ntp.ietf.org>
List-Unsubscribe: <https://www.ietf.org/mailman/options/ntp>, <mailto:ntp-request@ietf.org?subject=unsubscribe>
List-Archive: <https://mailarchive.ietf.org/arch/browse/ntp/>
List-Post: <mailto:ntp@ietf.org>
List-Help: <mailto:ntp-request@ietf.org?subject=help>
List-Subscribe: <https://www.ietf.org/mailman/listinfo/ntp>, <mailto:ntp-request@ietf.org?subject=subscribe>
X-List-Received-Date: Tue, 11 May 2021 07:59:25 -0000

On 5/10/21 7:05 PM, kristof.teichel@ptb.de wrote:
> @Doug: Daniel is correct; you can apply all kinds of magic, but 
> ultimately, your hard, 100% certain guarantees are going to be at best 
> "half of RTT" for two-way time transfer and "none at all" for one-way 
> transfer.

"At best" is too little. 100% certain guarantees (for two-way time sync) 
apply for *RTT* - and definitely *not* for half of RTT. The link 
symmetry assumption is one of the weakest point of today's network time 
synchronization protocols that malicious actors can exploit.

By knowing physical link properties (delay, capacity) one can restrict 
the RTT bound and decrease the limits. However, attackers could - in 
theory and practice - exploit this assumption, too (for instance by 
inserting new (faster-than)-light-speed paths).

If anyone is interested: theoretical aspects (and practical 
consequences) of securing time sync protocols against malicious actors 
can be found in an older paper (https://arxiv.org/pdf/1705.10669.pdf) 
and in parts of the subsequent PhD thesis 
(https://www.annessi.net/data/2019-Annessi_thesis.pdf).

regards
Joachim


> 
> -----"ntp" <ntp-bounces@ietf.org <mailto:ntp-bounces@ietf.org>> schrieb: 
> -----
> An: "Daniel Franke" <dfoxfranke@gmail.com <mailto:dfoxfranke@gmail.com>>
> Von: "Doug Arnold"
> Gesendet von: "ntp"
> Datum: 10.05.2021 18:19
> Kopie: "Miroslav Lichvar" <mlichvar@redhat.com 
> <mailto:mlichvar@redhat.com>>, "NTP WG" <ntp@ietf.org <mailto:ntp@ietf.org>>
> Betreff: Re: [Ntp] A simpler way to secure PTP
> 
> Many of the applications of PTP I know of require time transfer accuracy 
> better than half the RTT.  This is achieved using a variety of 
> mechanisms, including:
> 
>   * On-path support
> 
>   * High message rates + lucky packet filters
> 
>   * Synchronous Ethernet
> 
>   * Networks with lightly loaded switches
> 
>   * Preemptive switches
> 
>   * Asymmetry calibration
> 
>   * Multiple PTP domains with different paths to devices needing time
> 
>   * Multiple sources of time, that is PTP, plus other non-PTP time
>     transfer mechanisms in a redundant system
> 
> A switch in the middle could mount a delay attack, which is of course 
> immune to cryptography, but the risk could be reduced by 
> non-cryptographic defenses such as time source, or network path redundancy.
> 
> NTS4PTP could help against malicious agents which have gained access to 
> the network and start sending bogus PTP messages, for example 
> impersonating the Grandmaster.
> 
> Doug
> 
> *From: *Daniel Franke <dfoxfranke@gmail.com <mailto:dfoxfranke@gmail.com>>
> *Date: *Monday, May 10, 2021 at 11:21 AM
> *To: *Doug Arnold <doug.arnold@meinberg-usa.com 
> <mailto:doug.arnold@meinberg-usa.com>>
> *Cc: *Miroslav Lichvar <mlichvar@redhat.com 
> <mailto:mlichvar@redhat.com>>, NTP WG <ntp@ietf.org <mailto:ntp@ietf.org>>
> *Subject: *Re: [Ntp] A simpler way to secure PTP
> 
> On Mon, May 10, 2021 at 10:43 AM Doug Arnold 
> <doug.arnold@meinberg-usa.com <mailto:doug.arnold@meinberg-usa.com>> wrote:
> 
>     I have heard of people actually doing this in the field as a sanity
>     check.
> 
>     However, some applications that use PTP can be broken by introducing
>     timing errors that are less than the expected difference between PTP
>     and NTP.
> 
> You cannot solve this with cryptography. An adversarial network is, by 
> definition, one where you can't rely on statistical behavior and can't 
> neglect the probability of worst-case outcomes. The worst-case outcome 
> for any unicast protocol is going to be at least half the measured RTT, 
> and for a broadcast protocol the worst case is unbounded. As I've 
> mentioned before, you can improve this a little bit if you know a lower 
> bound on the physical distance `d` between the client and server, in 
> which case you can shrink each of your bounds by `d/c` where `c` is the 
> speed of light, but this still won't get you anywhere near the kind of 
> precision you have in mind. If worst-case, let alone typical-case, 
> NTS4NTP behavior is going to break your application in critical ways, 
> then you MUST have a physically-secure link to your time source. If you 
> have an adversary on your communication path, you're just screwed and 
> cryptography can't save you.
> 
> _______________________________________________
> ntp mailing list
> ntp@ietf.org <mailto:ntp@ietf.org>
> https://www.ietf.org/mailman/listinfo/ntp 
> <https://www.ietf.org/mailman/listinfo/ntp>
> 
> _______________________________________________
> ntp mailing list
> ntp@ietf.org
> https://www.ietf.org/mailman/listinfo/ntp
> 

-- 
---------------------------------------
Dr. Joachim Fabini
Senior Scientist
Institute of Telecommunications
TU Wien
Gusshausstrasse 25/E389
A-1040 Vienna, Austria
Tel: +43 1 58801-38813
mailto: Joachim.Fabini@tuwien.ac.at
---------------------------------------