RE: More context on ATSSS use case

"Flinck, Hannu (Nokia - FI/Espoo)" <hannu.flinck@nokia-bell-labs.com> Mon, 26 October 2020 07:14 UTC

Return-Path: <hannu.flinck@nokia-bell-labs.com>
X-Original-To: quic@ietfa.amsl.com
Delivered-To: quic@ietfa.amsl.com
Received: from localhost (localhost [127.0.0.1]) by ietfa.amsl.com (Postfix) with ESMTP id 3A8BD3A12E2 for <quic@ietfa.amsl.com>; Mon, 26 Oct 2020 00:14:40 -0700 (PDT)
X-Virus-Scanned: amavisd-new at amsl.com
X-Spam-Flag: NO
X-Spam-Score: -1.901
X-Spam-Level:
X-Spam-Status: No, score=-1.901 tagged_above=-999 required=5 tests=[BAYES_00=-1.9, DKIMWL_WL_HIGH=-0.001, DKIM_SIGNED=0.1, DKIM_VALID=-0.1, HTML_MESSAGE=0.001, RCVD_IN_MSPIKE_H2=-0.001, SPF_PASS=-0.001, URIBL_BLOCKED=0.001] autolearn=ham autolearn_force=no
Authentication-Results: ietfa.amsl.com (amavisd-new); dkim=pass (1024-bit key) header.d=nokia.onmicrosoft.com
Received: from mail.ietf.org ([4.31.198.44]) by localhost (ietfa.amsl.com [127.0.0.1]) (amavisd-new, port 10024) with ESMTP id kBFpZYo_0gHM for <quic@ietfa.amsl.com>; Mon, 26 Oct 2020 00:14:36 -0700 (PDT)
Received: from EUR05-VI1-obe.outbound.protection.outlook.com (mail-vi1eur05on2114.outbound.protection.outlook.com [40.107.21.114]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by ietfa.amsl.com (Postfix) with ESMTPS id 1E7E63A1243 for <quic@ietf.org>; Mon, 26 Oct 2020 00:14:35 -0700 (PDT)
ARC-Seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=N4bDZEt/7+arYkU+fXQehETrVs2uxqUwq1rmpjtSr2sF8Y1K7JG46U+J+lLcx3i5znqLFlzeuTI8mduvapXF0eQSdTcM7koyGT5U+yZnsCnrwH6q1PQE3JDmOYe4LgSXw+umsooSV7Hl3NPGqmtbeD3TYnRFFOqSSO5K0MOorSKBuokgNTiyRpOHctsXVa1Gz0HrPHdZVK2Au0Hk21yZwnaHqkIqmt0CGYZbBtPhwZkvE/pDGr8FhdlzuIZpBYlJOCu3MmcXfEZiZFiw2uGIBx65Y8dxJFfAwtqJfvclzG2Fv6dgfzqWXV5yLz57KR7GtaVLK0kTr9d4AW8bgxV3GA==
ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-SenderADCheck; bh=KdrkmiuZUkaLlukxsUGF+hfyL/9nG1VjDl5hh22a/AU=; b=dtu1IbtuE4I4Avhw8sGhcDjZVAel+kmbnfya+91kyppvKXbXEdqVIEZXZTnr5yV7jooS7dj6UlqM4SqJAZXNA9LJgdlD2qJ//Uz6g8vKK0f3HgWiuPRoM1Mh9q2rl4jJk39VIkUpGh3qVbCkQdZqvwj34vJQdBQgMb60V453hsC2FRJr1CXgYWbyqebOIfJUNkXZZZdFYMGy1FsJKmmrKaULkJAHE1xoUaFkPpSZSLF+uVY/6ZY7XyVihKqXnosAZpHxvdMYECPeu47NtRdeV+VhgWr1j1x9esf/UdAR6WQXiHGS+RvnX8LrENIa8VUOwLFrh8SeHhoNLM4jZwZUUQ==
ARC-Authentication-Results: i=1; mx.microsoft.com 1; spf=pass smtp.mailfrom=nokia-bell-labs.com; dmarc=pass action=none header.from=nokia-bell-labs.com; dkim=pass header.d=nokia-bell-labs.com; arc=none
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=nokia.onmicrosoft.com; s=selector1-nokia-onmicrosoft-com; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-SenderADCheck; bh=KdrkmiuZUkaLlukxsUGF+hfyL/9nG1VjDl5hh22a/AU=; b=vmsjbZGz8u39OE+cZLSoAuuw3V+e/3I3IibihMxxJBM7+lRz94oKcARpvwlIb4ttq4olLnc76tCb2ZZ8noyWDHNggaObzeGtxjb8B0rISGnxYDyeH77h7ipAzjrOANKjdqn+rMCaHCPJv3Q/iSJwtJn7mdtgzAId6h6muw1Xs+g=
Received: from HE1PR07MB3386.eurprd07.prod.outlook.com (2603:10a6:7:2d::25) by HE1PR07MB3276.eurprd07.prod.outlook.com (2603:10a6:7:32::24) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.20.3499.18; Mon, 26 Oct 2020 07:14:28 +0000
Received: from HE1PR07MB3386.eurprd07.prod.outlook.com ([fe80::f8c8:5ad8:f747:3fbf]) by HE1PR07MB3386.eurprd07.prod.outlook.com ([fe80::f8c8:5ad8:f747:3fbf%4]) with mapi id 15.20.3499.018; Mon, 26 Oct 2020 07:14:28 +0000
From: "Flinck, Hannu (Nokia - FI/Espoo)" <hannu.flinck@nokia-bell-labs.com>
To: David Schinazi <dschinazi.ietf@gmail.com>
CC: "quic@ietf.org" <quic@ietf.org>
Subject: RE: More context on ATSSS use case
Thread-Topic: More context on ATSSS use case
Thread-Index: AQHWqYC42e4II73LxU+v0/faox0YzKml8Q+AgAABUYCAABxyAIACjVUwgAAYqICAAMQYEA==
Date: Mon, 26 Oct 2020 07:14:28 +0000
Message-ID: <HE1PR07MB33863CEC9D19AF99701577CA9B190@HE1PR07MB3386.eurprd07.prod.outlook.com>
References: <50316F2A-931B-483E-B2CC-023C91AE91F0@ericsson.com> <CAPDSy+6k13fW_oQuEhmyQsMY9PH2DrVvKQ-DnJ=kQk5tTsN7TA@mail.gmail.com> <77E53AF0-6435-492A-B20A-5C18372BD1F8@ericsson.com> <CAPDSy+5pc7bPDXUT0uNu2MtD-MgVD7fXpG22eYY+7pmVBi30pw@mail.gmail.com> <0d7b0483916b3876934ed195075d8d72@mail.gmail.com> <HE1PR07MB3386230A22CAAC0816DB3B149B180@HE1PR07MB3386.eurprd07.prod.outlook.com> <CAPDSy+4F1hu7UHz4o2HKsbG9qpSL5Z0vM8dL_bMzT2-5Pc1qdA@mail.gmail.com>
In-Reply-To: <CAPDSy+4F1hu7UHz4o2HKsbG9qpSL5Z0vM8dL_bMzT2-5Pc1qdA@mail.gmail.com>
Accept-Language: en-US
Content-Language: en-US
X-MS-Has-Attach:
X-MS-TNEF-Correlator:
authentication-results: gmail.com; dkim=none (message not signed) header.d=none;gmail.com; dmarc=none action=none header.from=nokia-bell-labs.com;
x-originating-ip: [91.154.146.213]
x-ms-publictraffictype: Email
x-ms-office365-filtering-ht: Tenant
x-ms-office365-filtering-correlation-id: 4f32612a-6617-4f7b-eb7c-08d8797ec707
x-ms-traffictypediagnostic: HE1PR07MB3276:
x-microsoft-antispam-prvs: <HE1PR07MB32760E777AEEEB327EF1285F9B190@HE1PR07MB3276.eurprd07.prod.outlook.com>
x-ms-oob-tlc-oobclassifiers: OLM:10000;
x-ms-exchange-senderadcheck: 1
x-microsoft-antispam: BCL:0;
x-microsoft-antispam-message-info: kpDYgTFfP2rzJid/otVNLwZA1TEZFl4rMw83cGesferMzkpgufXk8t4R3pZpfBMfTjEINwMNq+/Q2nEfSsf2BQzv2nv+d9ALZN9JUgmY4frL8DYTeIv2DpODcEFV1D1sb5NQfTvcxiFMGnhIRMkW9UYJs7qtCgaBP1hrSCeM2cHo3z0fojpAuyo522FwmJQd4k/abxcgL7oQJLlJfwUyVGapiDCZtxR+tUzq0eYQqP1UO0vkuOgJ1tzJyLxyquYKcoiaWycXfzQjt8PG91+CtEVF50hU+lnL44WFyi4+xsAOeXCCkda/LEzoa0aN70KpvCwJ6RKRyUNLR0c84noM/Q==
x-forefront-antispam-report: CIP:255.255.255.255; CTRY:; LANG:en; SCL:1; SRV:; IPV:NLI; SFV:NSPM; H:HE1PR07MB3386.eurprd07.prod.outlook.com; PTR:; CAT:NONE; SFS:(4636009)(396003)(376002)(346002)(39860400002)(366004)(136003)(7696005)(30864003)(52536014)(66446008)(478600001)(66946007)(5660300002)(76116006)(64756008)(66556008)(66476007)(316002)(6916009)(186003)(2906002)(33656002)(71200400001)(9686003)(4326008)(55016002)(8676002)(6506007)(86362001)(53546011)(26005)(8936002)(83380400001); DIR:OUT; SFP:1102;
x-ms-exchange-antispam-messagedata: lRJul8MYu/SCj/QO5NkwYljdJT662w1L7iGd3bSXXALaxDqh4QyeZ173kF1EFGaTrAAyO+iZzrR+QTR2K3Fp4rH5goIyue12pQcCkzuFQdDzxR0U/fNAinXebSvF64pl47Xfi+QGNWITUT8Rp0mEdrSJHf/IEuycXFfoq1f3KyROVZqTcdJuTi+8o76NtwxTwaeUCcL8tBm7bHIhNHuzVovXD/haboHdZTLn/qr4oKqDYVVx311b7N4fnCwLU1JrtHaXjjxvoKZ3uXSNx3yW1DPi1XsVtxwtfVxpnhZsN0G9gPOiquqzz/JLd8BXT/XJnU3c5VuONpXR9bWCYDFFqcRlKjr0+m8OkjW/4X5o5EZi5+cdAF2a1Qi6AfauUAlatKN17q+AF77Vkgrf+lOErcZxN0qavJi2Tg8kAW5YQpY24rVessJqrGn9FSFK/YBROkzL3mGAJZYO1EZHD9fgmDTKFrqvV8XiNnuf9LPbjXNNlcg2UoGa7xLRrkis0zkg7W9+bdfq2EYk98y1P/t4BwKMkAW5HW1jJn/HKZul9tIrXnNHIWZOrbrFmOEXxJIFp2w2WcO/ACzQuvSkhWcG23vIlS+70NWWIZYPBsk+2gKUejK+/ax54Ac9ElSUMo9FWqnUUvkXcWG5tM6FzrplbQ==
x-ms-exchange-transport-forked: True
Content-Type: multipart/alternative; boundary="_000_HE1PR07MB33863CEC9D19AF99701577CA9B190HE1PR07MB3386eurp_"
MIME-Version: 1.0
X-OriginatorOrg: nokia-bell-labs.com
X-MS-Exchange-CrossTenant-AuthAs: Internal
X-MS-Exchange-CrossTenant-AuthSource: HE1PR07MB3386.eurprd07.prod.outlook.com
X-MS-Exchange-CrossTenant-Network-Message-Id: 4f32612a-6617-4f7b-eb7c-08d8797ec707
X-MS-Exchange-CrossTenant-originalarrivaltime: 26 Oct 2020 07:14:28.4010 (UTC)
X-MS-Exchange-CrossTenant-fromentityheader: Hosted
X-MS-Exchange-CrossTenant-id: 5d471751-9675-428d-917b-70f44f9630b0
X-MS-Exchange-CrossTenant-mailboxtype: HOSTED
X-MS-Exchange-CrossTenant-userprincipalname: dJnaXae7aIRmkqhwhacG5OVV6+51jiIMvjdSxVTDdSTKo80smFFu28SaUQ27zqG5rxZCUA+Z6UkrC9DdOwhNrMFADeR1U12wFuJ7pdnSesMusmsEWws+PPKY9evNzQwB
X-MS-Exchange-Transport-CrossTenantHeadersStamped: HE1PR07MB3276
Archived-At: <https://mailarchive.ietf.org/arch/msg/quic/JRrue-lS-M___U--AsLb4wWkz0w>
X-BeenThere: quic@ietf.org
X-Mailman-Version: 2.1.29
Precedence: list
List-Id: Main mailing list of the IETF QUIC working group <quic.ietf.org>
List-Unsubscribe: <https://www.ietf.org/mailman/options/quic>, <mailto:quic-request@ietf.org?subject=unsubscribe>
List-Archive: <https://mailarchive.ietf.org/arch/browse/quic/>
List-Post: <mailto:quic@ietf.org>
List-Help: <mailto:quic-request@ietf.org?subject=help>
List-Subscribe: <https://www.ietf.org/mailman/listinfo/quic>, <mailto:quic-request@ietf.org?subject=subscribe>
X-List-Received-Date: Mon, 26 Oct 2020 07:14:40 -0000

Hello David

I do not know where  this “ATSSS improves latency” comes from.

I can only find you own sentence “I'm noticing a pattern where no one is able to explain how this will improve the end-user experience though, so I'm going to assume that this is beneficial for carriers and not end-users” that talks about improving. But as you notice your original statement is not about improving latency but end-user experience.

Would you agree that end user experience get better (improves) if the performance is not fluctuating but steady to the limits that the two radio access can support?

This same applies to the reliability, mean time between failure calculations. If you have two parallel accesses you are better off than having one.
This is also the motivation why there are back links in many critical deployments.

Best regards
Hannu

From: David Schinazi <dschinazi.ietf@gmail.com>
Sent: Sunday, October 25, 2020 9:21 PM
To: Flinck, Hannu (Nokia - FI/Espoo) <hannu.flinck@nokia-bell-labs.com>
Cc: quic@ietf.org
Subject: Re: More context on ATSSS use case

Hi Hannu, response inline.

On Sun, Oct 25, 2020 at 11:05 AM Flinck, Hannu (Nokia - FI/Espoo) <hannu.flinck@nokia-bell-labs.com<mailto:hannu.flinck@nokia-bell-labs.com>> wrote:
Hello David and others,

ATSSS supports low latency applications in the following way (this is a quote from 23.700-93) as part of its “Priority-based” mode:

“RTT Threshold: Supported by using the RTT estimation mechanism defined in draft-ietf-quic-recovery, with which the QUIC protocol can estimate the RTT of a QUIC connection. Example of ATSSS rule using this steering mode: "Send the traffic of App1 to the access with RTT < 100ms; if both accesses have RTT < 100ms, send it to non-3GPP access". … As long as the selected access has RTT < 100ms, the traffic can remain on this access.”

I hope this clarifies that ATSSS is supporting what was called as Interactive service/Siri service in Christoph’s presentation.

There is a very big difference between "ATSSS supports low latency applications" and "ATSSS improves latency". From the quote you posted, it sounds like ATSSS is working hard to make sure it doesn't make latency too much worse, but I'm not seeing anything indicating that it could make latency better.

David

And as explained by Mirja earlier it is the application that requests what kind of session it would like to have.

Best regards
Hannu



From: QUIC <quic-bounces@ietf.org<mailto:quic-bounces@ietf.org>> On Behalf Of Florin Baboescu
Sent: Saturday, October 24, 2020 5:54 AM
To: David Schinazi <dschinazi.ietf@gmail.com<mailto:dschinazi.ietf@gmail.com>>; Mirja Kuehlewind <mirja.kuehlewind@ericsson.com<mailto:mirja.kuehlewind@ericsson.com>>
Cc: quic@ietf.org<mailto:quic@ietf.org>
Subject: RE: More context on ATSSS use case

Hi David,

I see that you are repeating a statement with which I definitely can not agree “I'm noticing a pattern where no one is able to explain how this will improve the end-user experience though, so I'm going to assume that this is beneficial for carriers and not end-users.” So I’ll try to give it a try. First I thought it was not necessary as there were already some great presentations by Christoph, Olivier and the guys from Alibaba which should have provided you with a very good reasoning on benefits for the end user. I am not going to go again through what they presented.

               We also had one slide in our presentation, which may have been overlooked, detailing at least three elements through which a multipath access solution may improve the overall Quality of Experience for the end user:

  1.  Increased capacity, 2) increased coverage and 3) increased reliability.

Let’s assume for simplicity an user which would be charged for the amount of data he/she would use over a cellular network using licensed spectrum while for all the data exchanged over the WiFi. While the user is under a good WiFi coverage all his traffic is going to be routed over the WiFi, no data traffic is going over the cellular. However, when the user is in an area of limited coverage or the level of interference reaches a certain threshold the quality of the communication over the WiFi access degrades. As a result the achievable throughput over the WiFi may get below a certain threshold. At this moment the WiFi access may not be able to sustain the throughput the user may require. The user may either switch over to the cellular (paying a higher penalty) or use both accesses, WiFi and cellular. When both accesses are used,  all the traffic below a maximum threshold will go over the WiFi access, while all the leftover traffic will go over the cellular access.
In total for this example there are the following cases:

User entirely under the WiFi coverage

User entirely under the cellular coverage (no WiFi coverage)

User under both WiFi and cellular coverage

This solution essentially increases the coverage area for the user complementing the use WiFi with cellular in zones of poor coverage or no coverage.  Without it the user would have been left without data access in areas of no WiFi coverage, or with a high rate of error and limited throughput access in the areas of poor WiFi coverage or high interference. The solution increases the reliability, allowing the user to backup the primary access(in this case WiFi) with a secondary access (cellular).

On a side note I would also try to answer a different question. Is the bandwidth aggregation solution always useful? Based on various companies contributions in 3GPP it was noticed that there is no benefit for the user to do bandwidth aggregation when the throughput ratio between the two accesses exceeds somewhere between (3-5):1.

Another interesting use case addresses one of the limitations of WiFi ( before WiFi6, which uses an OFDMA based access). As many of you know, in WiFi an user can transmit only after it detects that there is no one else transmitting at the same time. Because of this when the number of users served by the same access point increases the quality of the access decreases, as all the users compete for the same access. In this case the end user may use the WiFi access for all the downlink traffic while for the uplink traffic may use the cellular access. This use case improves for the end user both the capacity for both downlink and uplink as well as the reliability.

These are just few examples which try to show the benefits of bringing a multipath solution in the toolbox for both end user as well as network elements/functions. I hope I brought some more clarity to you.
Regards,
-Florin



From: QUIC [mailto:quic-bounces@ietf.org<mailto:quic-bounces@ietf.org>] On Behalf Of David Schinazi
Sent: Friday, October 23, 2020 6:12 PM
To: Mirja Kuehlewind <mirja.kuehlewind@ericsson.com<mailto:mirja.kuehlewind@ericsson.com>>
Cc: quic@ietf.org<mailto:quic@ietf.org>
Subject: Re: More context on ATSSS use case

Hi Mirja,

I understand how in some scenarios this could increase throughput.
However, can you clarify how this could improve latency?

I'm noticing a pattern where no one is able to explain how this will
improve the end-user experience though, so I'm going to assume
that this is beneficial for carriers and not end-users. Unfortunately
I don't have the time to go to 3GPP and do this research myself.

David

On Fri, Oct 23, 2020 at 6:07 PM Mirja Kuehlewind <mirja.kuehlewind@ericsson.com<mailto:mirja.kuehlewind@ericsson.com>> wrote:
Hi David,

this depends on the actual use case. Using multipath in a masque-like proxy setup covers multiple scenarios; in the hybrid access scenario it’s throughput, in other cases it can be latency, or a cheaper data subscription. That’s what I tried to explain below.

However, the whole point of ATSSS, as well as other use cases, is to provide the (mobile) operator’s costumer/the user better performance that what you have right now when using only a single path by actually making use of currently unused resources. We can argue what’s the best way to achieve that but you probably need to go to 3GPP and have that this discussion there. I was mainly trying to explain what ATSSS is, what the motivation is, and what the requirements are.

Mirja



From: David Schinazi <dschinazi.ietf@gmail.com<mailto:dschinazi.ietf@gmail.com>>
Date: Friday, 23. October 2020 at 23:08
To: Mirja Kuehlewind <mirja.kuehlewind@ericsson.com<mailto:mirja.kuehlewind@ericsson.com>>
Cc: "quic@ietf.org<mailto:quic@ietf.org>" <quic@ietf.org<mailto:quic@ietf.org>>
Subject: Re: More context on ATSSS use case

Hi Mirja,

Can you clarify what you mean by "optimize resource usage and
therefore also the performance for the user"?
1) What does it mean in networking terms (latency, throughput, etc.)?
2) What does it mean in end-user terms (video loads faster, etc.)?

Thanks,
David

On Fri, Oct 23, 2020 at 12:45 PM Mirja Kuehlewind <mirja.kuehlewind=40ericsson.com@dmarc.ietf.org<mailto:40ericsson.com@dmarc.ietf.org>> wrote:
Hi all,

based on the discussion yesterday I would like to provide some more context for the ATSSS use case and some notes that probably also applies to other proxy based-use cases.

First of all, I would like to clearly note that it's the client (UE) that has to request ATSSS support (a Multi-Access (MA)-PDU session) when connecting to the mobile network and it's also the client that starts the QUIC connection to the proxy (hosted in the UPF). Further for each connection that the client starts to some target content server, it can again decide to use the ATSSS setup or not (by otherwise connecting to the server over a single PDU mobile-network-only session). That means the endpoint can locally decide if it wants to only use the mobile link for certain connections instead of any kind of ATSSS service. However, that decision will likely not only depend on the application characteristics but also on e.g. the data subscription, user preferences, or device status.

And that brings me to another point: The right scheduling for the use of multiple paths does not only depend on the application characteristics. It's also the network conditions of each link, which to some extend can be measured in the transport if traffic is sent on both/all links, as well as other factors such as user tariff, remaining data volume, or battery status. Yes, this doesn't make the problem easier but we also don't need to solve this problem in a general way. For each of the proxy-based use cases presented yesterday there is a specific network setup with specific characteristics and goals. And often the two links do have quite different but known characteristics which does make the decision easier.

For the hybrid access case, you have one DSL and one mobile link and multipath is used for bandwidth aggregation. This setup is usually deployed when the physical line that is serving the DSL doesn't provide sufficient bandwidth and in certain areas upgrading those links would be very costly. In this case the scheduling is clear: you always fill up the DSL first and only use the mobile link when the DSL capacity is exhausted; this can happen for e.g. high quality video streaming. In that case the mobile link usually has a higher latency and you might need to wait a few more seconds before your video starts but I guess that's better than watching the video in low quality.

For ATSSS you always have one mobile 3GPP link and one non-3GPP link, usually wifi. And as I said in the chat yesterday, for ATSSS this will probably get first deployed with managed wifi networks, such that are often available today already by mobile operators in certain countries. ATSSS also provides a small number of so called "steering modes" which impacts the scheduling used, as presented by Spencer yesterday. These modes are provided by the network to the client (on the UE) as well as the proxy (hosted in the UPF) and these both tunnel endpoints decide independently which scheduling to use.

There are different scenarios for these different steering modes, however, it's rather a small set of options. When selecting these modes the network is able to take additional factors into account such as subscriber data, operator configuration, or also application server provided info, e.g. for cases where there is actually an SLA between the content provider and network operator in place.

By default the scheduling could always prefer one link and only switch over when the performance is not sufficient anymore, e.g. the selected network gets loaded. While you can measure the network characteristics, and ATSSS will also rely on measured characteristics when deciding which path to use, the operator of the mobile and wifi networks might actually have some additional knowledge about the current network load (number of connected user, total traffic volume). Further both the UE as well as the UPF in the mobile network might actually have a better view about what's happening on the local link than the far end where the content server sits, e.g. knowing that a user is moving out of coverage. As such the network could for example provide a priority for one path when signaling the steering mode and may also indicate certain threshold values that could be used to make a switching decision. However, for most flows it might be even simpler than that and probably some kind of default mode will be used, e.g. based on lowest delay assuming that delay increases when one link gets congested.

Another scenario is that a user might choose a cheaper tariff where as much as possible of the downlink traffic is off-loaded to wifi. This needs to be implemented based on the scheduling in the UPF sitting in the mobile network. Further, as the steering modes are provided on a per flow level, another example scenarios is that bandwidth aggregation is requested for certain traffic flow based on an existing SLA.

Please note that in any of these setups there are multiple e2e connection that use the same QUIC tunnel and as just noted each flow can have a different steering mode assigned. This is why simultaneous use of both paths is especially important for proxy-based use cases.

All these scenarios benefit from knowledge about the local network conditions to optimize resource usage and therefore also the performance for the user.

Hope that helps,
Mirja