Re: [rrg] Summary of Ivip for discussion and selection process
Robin Whittle <rw@firstpr.com.au> Fri, 18 December 2009 00:48 UTC
Return-Path: <rw@firstpr.com.au>
X-Original-To: rrg@core3.amsl.com
Delivered-To: rrg@core3.amsl.com
Received: from localhost (localhost [127.0.0.1]) by core3.amsl.com (Postfix) with ESMTP id 42AFD28C12D for <rrg@core3.amsl.com>; Thu, 17 Dec 2009 16:48:25 -0800 (PST)
X-Virus-Scanned: amavisd-new at amsl.com
X-Spam-Flag: NO
X-Spam-Score: -1.551
X-Spam-Level:
X-Spam-Status: No, score=-1.551 tagged_above=-999 required=5 tests=[AWL=0.344, BAYES_00=-2.599, HELO_EQ_AU=0.377, HOST_EQ_AU=0.327]
Received: from mail.ietf.org ([64.170.98.32]) by localhost (core3.amsl.com [127.0.0.1]) (amavisd-new, port 10024) with ESMTP id WEoKOvRrN0Ye for <rrg@core3.amsl.com>; Thu, 17 Dec 2009 16:48:24 -0800 (PST)
Received: from gair.firstpr.com.au (gair.firstpr.com.au [150.101.162.123]) by core3.amsl.com (Postfix) with ESMTP id 677DB3A68ED for <rrg@irtf.org>; Thu, 17 Dec 2009 16:48:22 -0800 (PST)
Received: from [10.0.0.6] (wira.firstpr.com.au [10.0.0.6]) by gair.firstpr.com.au (Postfix) with ESMTP id 67058175DFF; Fri, 18 Dec 2009 11:48:05 +1100 (EST)
Message-ID: <4B2AD148.1010508@firstpr.com.au>
Date: Fri, 18 Dec 2009 11:48:08 +1100
From: Robin Whittle <rw@firstpr.com.au>
Organization: First Principles
User-Agent: Thunderbird 2.0.0.23 (Windows/20090812)
MIME-Version: 1.0
To: RRG <rrg@irtf.org>
References: <4B28DD71.1020502@firstpr.com.au> <4B293B99.2010200@tony.li>
In-Reply-To: <4B293B99.2010200@tony.li>
Content-Type: text/plain; charset="ISO-8859-1"
Content-Transfer-Encoding: 7bit
Subject: Re: [rrg] Summary of Ivip for discussion and selection process
X-BeenThere: rrg@irtf.org
X-Mailman-Version: 2.1.9
Precedence: list
List-Id: IRTF Routing Research Group <rrg.irtf.org>
List-Unsubscribe: <http://www.irtf.org/mailman/listinfo/rrg>, <mailto:rrg-request@irtf.org?subject=unsubscribe>
List-Archive: <http://www.irtf.org/mail-archive/web/rrg>
List-Post: <mailto:rrg@irtf.org>
List-Help: <mailto:rrg-request@irtf.org?subject=help>
List-Subscribe: <http://www.irtf.org/mailman/listinfo/rrg>, <mailto:rrg-request@irtf.org?subject=subscribe>
X-List-Received-Date: Fri, 18 Dec 2009 00:48:25 -0000
Hi Tony, Here's a 995 word version. - Robin Ivip Summary Robin Whittle 2009-12-18 http://www.firstpr.com.au/ip/ivip/Ivip-RRG-1kw.html The 2100 word http://www.firstpr.com.au/ip/ivip/Ivip-RRG.html has more explanation and qualifications. Key ideas Ivip (pr. eye-vip, est. 2007-06-15) is a core-edge separation scheme for IPv4 and IPv6. It provides multihoming, portability of address space and inbound traffic engineering for end-user networks of all sizes and types, including those of corporations, SOHO and mobile devices. Ivip meets all the constraints imposed by the need for widespread voluntary adoption [1]. Ivip's global fast-push mapping distribution network is structured like a cross-linked multicast tree. This pushes all mapping changes to full database query servers (QSDs) within ISPs and end-user networks which have ITRs. Each mapping change is sent to all QSDs within a few seconds. ITRs gain mapping information from these local QSDs within a few tens of milliseconds. QSDs notify ITRs of changed mapping with similarly low latency. ITRs tunnel all traffic packets to the correct ETR without significant delay. Ivip's mapping consists of a single ETR address for each range of mapped address space. Ivip ITRs do not need to test reachability to ETRs because the mapping is changed in real-time to that of the desired ETR. End-user networks control the mapping, typically by contracting a specialized company to monitor the reachability of their ETRs and change the mapping to achieve multihoming and/or TE. So the mechanisms which control ITR tunneling are controlled by the end-user networks in real-time and are completely separate from the core-edge separation scheme itself. ITRs can be implemented in dedicated servers or hardware-based routers. The ITR function can also be integrated into sending hosts. ETRs are relatively simple and only communicate with ITRs rarely - for Path MTU management with longer packets. Ivip-mapped ranges of end-user address space need not be subnets. They can be of any length, in units of IPv4 addresses or IPv6 /64s. Compared to conventional unscalable BGP techniques, and to the use of core-edge separation architectures with non-real-time mapping systems, end-user networks will be able to achieve more flexible and responsive inbound TE. If inbound traffic is split into several streams, each to addresses in different mapped ranges, then real-time mapping changes can be used to steer the streams between multiple ETRs at multiple ISPs. Open ITRs in the DFZ (OITRDs, similar to LISP's PTRs) tunnel packets sent by hosts in networks which lack ITRs. So multihoming, portability and TE benefits apply to all traffic. ITRs request mapping either directly from a local QSD or via one or more layers of caching query servers (QSCs) which in turn request it from a local QSD. QSCs are optional but generally desirable since they reduce the query load on QSDs. ETRs may be in ISP or end-user networks. IP-in-IP encapsulation is used, so there is no UDP or any other header. PMTUD (Path MTU Discovery) management with minimal complexity and overhead will handle the problems caused by encapsulation, and adapt smoothly to jumboframe paths becoming available in the DFZ. The outer header's source address is that of the sending host - which enables existing ISP BR filtering of source addresses to be extended to encapsulated traffic packets by the simple mechanism of the ETR dropping packets whose inner and outer source address do not match. Extensions TTR Mobility The TTR approach to mobility [2] is applicable to all core-edge separation techniques and provides scalable IPv4 and IPv6 mobility in which the MN keeps its own mapped IP address(es) no matter how or where it is physically connected, including behind one or more layers of NAT. Path-lengths are typically optimal or close to optimal and the MN communicates normally with all other non-mobile hosts (no stack or app changes), and of course other MNs. Mapping changes are only needed when the MN uses a new TTR, which would typically be if the MN moved more than 1000km. Mapping changes are not required when the MN changes its physical address(es). Modified Header Forwarding Separate schemes for IPv4 and IPv6 enable tunneling from ITR to ETR without encapsulation. This will remove the encapsulation overhead and PMTUD problems. Both approaches involve modifying all routers between the ITR and ETR to accept a modified form of the IP header. These schemes require new FIB/RIB functionality in DFZ and some other routers but do not alter the BGP functions of DFZ routers. Gains Amenable to widespread voluntary adoption due to no need for host changes, complete support for packets sent from non-upgraded networks and no significant degradation in performance. Modular separation of the control of ITR tunneling behavior from the ITRs and the core-edge separation scheme itself: end-user networks control mapping in any way they like, in real-time. A small fee per mapping change deters frivolous changes and helps pay for pushing the mapping data to all QSDs. End-user networks who make frequent mapping changes for inbound TE, should find these fees attractive considering how it improves their ability to utilize the bandwidth of multiple ISP links. End-user networks will typically pay the cost of OITRD forwarding to their networks. This provides a business model for OITRD deployment and avoids unfair distribution of costs. Existing source address filtering arrangements at BRs of ISPs and end-user networks are prohibitively expensive to implement directly in ETRs, but with the outer header's source address being the same as the sending host's address, Ivip ETRs inexpensively enforce BR filtering on decapsulated packets. Costs QSDs receive all mapping changes and store a complete copy of the mapping database. However, a worst case scenario is 10 billion IPv6 mappings, each of 32 bytes, which fits on a consumer hard drive today and should fit in server DRAM by the time such adoption is reached. The maximum number of non-mobile networks requiring multihoming etc. is likely to be ~10M, so most of the 10B mappings would be for mobile devices. However, TTR mobility does not involve frequent mapping changes since most MNs only rarely move more than 1000km. Documents http://www.firstpr.com.au/ip/ivip/Ivip-summary.pdf http://tools.ietf.org/html/draft-whittle-ivip-db-fast-push-01 http://www.firstpr.com.au/ip/ivip/pmtud-frag/ http://tools.ietf.org/html/draft-whittle-ivip4-etr-addr-forw-01 http://www.firstpr.com.au/ip/ivip/ivip6/ [1] http://www.firstpr.com.au/ip/ivip/RRG-2009/constraints/ [2] http://www.firstpr.com.au/ip/ivip/TTR-Mobility.pdf