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Abstract—Networks rely on broadcasts and multicasts for some
of the most basic services such as auto-configuration. In the recent
past, application layer protocols have increasingly made use of
the broadcast mechanism. Examples of these applications include
Dropbox, Spotify or BitTorrent Sync. Given that broadcasts can
be seen by every device in a broadcast domain, information that
can be gleaned from this traffic is trivially accessible by a passive
observer. Therefore, an obvious question is: what does broadcast
and multicast traffic reveal about a device, a user or a group in
a network?

To answer this question, the broadcast traffic of two fairly
large wireless networks was analyzed. One of these networks
was the campus network of a university which was analyzed for
a period of six months. Also, two SSIDs of the IETF meeting
network in Yokohama in November 2015 were analyzed for a
period of about 36 hours.

In addition to a general analysis of the composition of the
daily broadcast traffic such as protocols observed, the number
of devices, the peak times of user activity etc., a more in-depth
analysis of a few protocols was carried out in order to identify
users and their relation to each other. In other words, we used
the available broadcast data to show that it is possible to generate
a social graph of the network’s users base, which e.g. helps
to identify groups among students, their course of study, their
online times and other personal information. We have verified
the correctness of our inferred social graph by asking students
to confirm our findings.

None of the observed broadcast protocols alone is to blame for
the above and there is no easy technical solution to the problem
while retaining the benefits of the broadcast protocols. However,
there is a simple yet effective countermeasure against this kind
of analysis which is non-technical and ”only” requires changing
user behavior.

Index Terms—Broadcasts, Dropbox, hostnames, privacy, traffic
analysis

I. INTRODUCTION

As RFC 919 notes: “The use of broadcasts, especially on
high-speed local area networks, is a good base for many
applications” [1]. While RFC 919 was written in 1984, it
seems that many application developers have re-discovered
the value of broadcast message exchange. Popular applications
and services that utilize broadcasts today include Dropbox,
Spotify, Steam and UPnP. Given that the used protocols
all disclose information to every host on the subnet, it is
trivial to collect this information. Protocol designers have
certainly made sure that when presented with their protocol’s
information alone, a passive observer will not be able to make
any good use of it. However, since other applications also
broadcast information, these data sources can be combined to
learn about devices, users and groups of users on the network.

In order to analyze what information today’s broadcast
traffic gives away, we have looked at all broadcasts sent on
a large wireless campus network serving thousands of users
at our university from October 2014 to April 2015 (note that
we have analyzed both broadcast and multicast messages but
will only refer to it as broadcast in the text to make it more
readable). In addition, we have also analyzed the broadcast
traffic on the IETF meeting network during the 94th meeting
in Yokohama in November 2015 as a second data point to
demonstrate that this analysis can be done at a public event.
Due to restrictions of the IETF network and the much briefer
measurement period the focus of this paper is on the first data
point.

A. Methodology

We performed both experiments by connecting a computer
to the network like any user would do, therefore we observed
only traffic accessible by any participant of the network. The
broadcast traffic from all users in the university’s network was
visible when connecting to one access point, therefore only
one capture point was necessary to gather all data.

Our overall goal was to learn as much as possible not only
about the devices that send out the broadcast messages, but
also about their users and the social graph of these users
relying exclusively on data that any user of the network
could access. We used insider knowledge only to verify the
correctness of our deductions.

II. ETHICS AND ANONYMIZATION

Tapping in on traffic on a network generally raises privacy
concerns, even if it is broadcast traffic, which means data
is trivially accessible by everyone on the subnet and the
listener is actually part of the intended recipient group. Local
legislation might or might not allow this kind of analysis and
can require certain procedures and precautions.

Therefore, before we started our large-scale experiment,
we used our lab to sample broadcast and multicast data.
During these experiments it became apparent that personally
identifiable information (PII) can appear in some of these
messages. This required us to use anonymization techniques on
the data beyond securely hashing information such as MAC
and IP addresses. In particular, real names were frequently
found in hostnames. We therefore tokenized hostnames found
in all protocols sending them, removed tokens from a list of
well-known terms as explained later and hashed all remaining
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tokens which potentially could contain PII. This removed PII
from the collected data and made the later analysis much more
difficult.

We consulted with the legal department of the German
research network (DFN) and received a detailed statement
from them. Meanwhile, they have published their work on
this particular legal topic in [2]. We believe, based on this
statement, our experiment conforms to German data privacy
law and user privacy was protected during these experiments.
Also, for the experiments on the IETF meeting network, we
have consulted with a number of experts in the field, parties
familiar with local law and the IETF leadership, in particular
the chair of the IETF. The experiment was announced to
the participants of the meeting and only a selection of the
available SSIDs announced during the meeting were analyzed
to give meeting participants the opportunity to opt out of the
experiments. There was a lively discussion on the meeting
mailing list following the announcement of the experiment
[3]. We actually tried to do this experiment at the meeting 93
in Prague, but we were not able to receive a definitive answer
on some of the legal questions in time [4]. Also, at that time
there was a very lively discussion on the privacy implications
of such an experiment [5].

Given the concerns expressed whenever our experiments
were announced, we believe it is important to analyze current
broadcast protocols in a privacy-preserving manner, to have a
more informed debate about the issue and to understand what
broadcast data currently reveals in terms of sensitive informa-
tion. In particular since the data collection we performed can
be trivially done by an attacker just by passively listening,
without having to have special privileges or having access to
a special location in the network.

III. DATA ANALYSIS

We base most of our analysis on the larger data set collected
at the university. There are two reasons for this. For one, given
the larger time window of the analysis, the results are more
expressive. Additionally, on the IETF network, broadcasts
were not distributed over the air interface and only multicast
messages were seen on the network. Therefore, when the
data set is not explicitly identified below, we will be talking
about the university’s data. We will explicitly mention when
the IETF data is being addressed. The smaller data set is
nevertheless quite valuable since represents an interesting
second data point with a very different user base—highly
knowledgeable domain experts.

On the university network, the total volume of broadcast
data seen during the six month time period did amount to
about 40 GB, counting every byte starting with the Ethernet
header. Broadcast data peaked at around 1 GB per day with a
low of 3.5 MB and an average of 215 MB per day. Analyzing
this data—even live—does not require special hardware and
can clearly be done using a low-performance device. As
expected for a university network, most traffic could be seen
on weekdays during term time, while the weekends and non-
term days showed far less activity.

The data contained about 35,000 different MAC addresses
of which we suspect a maximum of 21,000 to be from real
devices. The other MAC addresses were either from apparent
experiments by students or from VPN clients that were part of
the same broadcast domain for about half the time of our data
collection. Luckily, it was fairly easy to identify these and to
remove them from the data set.

Of all the packets observed, approximately 90% were UDP
packets. To find the protocols worth analyzing, we looked at
which protocols accounted for the most UDP packets sent.
They were: mDNS (16%), SSDP (15%), LLMNR (13%),
NetBIOS (7%) and Dropbox LAN Sync Discovery Protocol
(7%). We focussed our attention mainly on mDNS, NetBIOS
and Dropbox after inspecting the information these protocols
could reveal. Including the other protocols as part of this
analysis remains future work.

The hourly multicast traffic of the IETF network (both
monitored SSIDs combined) in the 36 hour measurement
window did amount to nearly one GB. During that time, about
2,600 MAC addresses were observed. Out of the protocols
above, the largest fraction of the multicast traffic consisted of
mDNS as well (36%)—remember that no broadcast traffic was
recorded on the IETF network and therefore some protocols
were missing.

A. Dropbox

The Dropbox desktop application uses the Dropbox LAN
Sync Discovery Protocol to speed up the synchronization of
shared directories that are present within the local network.
Such folders do not have to be synced from the Dropbox
servers but from other Dropbox users nearby to save band-
width. This option is enabled by default and leads to multiple
broadcast packets on UDP port 17500 every 30 seconds. The
datagrams sent contain a unique identifier for the Dropbox
installation of one user, the so-called host int, which makes it
possible to track this user even if the IP address or MAC ad-
dress changes. This also enables us to identify two interfaces,
e.g. a WiFi and a LAN interface, to belong to one device. The
broadcast packets also contain namespaces, which is a list of
unique IDs for the shares this user has. In other words: if two
users share one directory, they announce the same ID in the
namespace list.

For the six month period, 2,560 Dropbox user installations
with 9,361 shares overall could be observed. The users of the
analyzed network are mostly students, thus we suspected that
many of them would use the shares for specific lectures or
the whole course of studies, meaning they would show up
as a community if we drew the Dropbox users and shares
as a graph. As the complete data covers two semesters with
vacation time in between, we decided to analyse only the
Dropbox data from the first three weeks of the summer
semester beginning on the 16th of March 2015. We removed
all shares which showed up in only one namespace list as
they are not of interest for an analysis of the social graph of
the network’s user base, i.e. these shares might have multiple
users but only one within our network. After that, we removed
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the users which only had such a share. This left us with 712
users and 718 shares, for which we drew a directed graph. This
graph is an abstract representation of a social graph between
the users of the network. It shows who is sharing data with
whom, but it does not reveal who these users are, which course
they attend or why they have a connection.

Fig. 1. Dropbox community graph

In order to group users with stronger ties into groups,
we applied the Louvain method to identify 101 communities
within this graph [6]. The largest of those had 48 users and
31 shares (with 42 users for the largest share). We chose six
communities to investigate further for our analysis based on
the number of users, shares and modularity. One of those
communities is shown in figure 1. The black nodes represent
shares, the other nodes represent users connected to the shares
they announce. We numbered all communities and use those
numbers throughout this paper to identify them. The graph in
figure 1 shows community 54.

At this point we tried to identify publicly available infor-
mation that could help us to further enrich those communities
with information. We e.g. crawled the university’s publicly
accessible course schedules and tried to match online times
of community members and course schedule times. Unfortu-
nately, this did not yield good results in general.

B. Hostnames

The abstract social graph the Dropbox protocol reveals
has interesting properties in itself. E.g. one can see how
interconnected students are. But to make it really interesting,
the nodes in the graph need to be correlated with actual
user names. This clearly is information that no sane protocol
designer would broadcast in the clear. A number of protocols
however broadcast the hostname of the device. NetBIOS over
TCP/IP and mDNS are prime examples for such protocols, we
analyzed and evaluated these.

Approximately 7,600 unique hostnames were announced
from 10,500 different MAC addresses. We processed these
hostnames to remove duplicates (e.g. “John-Does-iPad” and
“John-Does-iPad-2”) and recurring strings such as “iphone”,
“macbook” and others. A little more than 5,300 hostnames
remained for us to consider. To anonymize this list before
analysis, we separated each hostname into tokens (e.g. “John-
Doe” into “John” and “Doe”) and stored them after hashing
them securely first.

The most interesting finding in our analysis was that most
users name their device after themselves using either their first,
last or both names as part of the hostname. For our analysis,
we only had hashed information available. In order to come to
this conclusion, we needed a second data source from which
we could extract names of people at the university, hash those
too, and match for equality. This source is introduced in the
next section. In addition, other interesting information can
be extracted from the hostname, e.g. the language the user
speaks. Apple users reveal particularly liberally their language
by having names such as “iPhone von John Doe”, where the
“von” indicates a German-speaking user. A lot of hostnames
reveal the device vendor, the type of device (phone, laptop
etc.), the device model but also locations, faculties, functions
(e.g. file server), or login names, initials and nicknames. We
observed this information in control experiments conducted
with a larger number of students who gave their consent to
our experiment before connecting to an access point provided
by us.

Enriching the social graph with this data helped identifying
nodes in it. Also, mining information from social networks
of well-known nodes like a list of friends can lead to the
identification of previously only partially identified nodes, for
example if only the first name is present in the hostname
or initials. We did this manually for some members of our
research group and students of the control experiments and
were surprisingly successful. But to automate this for the
gathered hostnames we needed to find another data source.

C. Additional data set

The LDAP server of the university is accessible from the
campus network and LDAP searches are not restricted. This
allowed us to automate the above process. We extracted all
user data the server offered which included the login name1,
first and last name1, email address1, faculty, course of study,
status (student, professor, etc.) and the date when the password
has last been changed. We collected more than 8,400 user
records this way. Out of those users, 1,300 had a unique
first name, i.e. no other user had that particular first name.
In contrast 4,564 last names were unique.

Using the list of 5,300 hostnames and the LDAP infor-
mation, we searched for all hostnames that contained an
existing first name, last name or both as part of the hostname.
Interesting for us was whether the name itself would uniquely
identify the user or how many LDAP users would remain as
potential users of the device. As an example, if “John”(hashed)
was part of the hostname, we counted the number of people
called John in the LDAP data. If only a single John existed,
we could identify the user uniquely. If five Johns existed, we
could at least narrow the potential users down and combine it
with e.g. the Dropbox data, online times, course of study of
the host’s Dropbox contacts etc. to finally identify the correct
John.

1This field was only stored hashed for our analysis.
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Fig. 2. CDF for LDAP user matches based on the hostname

We found approximately 2,900 first names as part of host-
names, where we did not count first names twice, e.g. “John-
Does-iPhone” and “John-Mays-PC” would only count once as
the occurrence of “John” in hostnames. Out of those, around
500 would uniquely identify the LDAP user. The CDF of name
matches is shown in figure 2. 17% of the first names used in
hostnames did uniquely identify the user of a host. A quarter
of the first names matched either uniquely or at most appeared
twice. The biggest number of matches observed was 244, i.e.
there is a first name used in hostnames that matches 244 LDAP
users.

We also found 929 last names used as part of a hostname.
The probability of uniquely identifying these users is—not
surprisingly—much higher. Over 50% of the last names used
as part of a hostname would uniquely identify the user of the
host. The highest number of LDAP users that match a last
name found as part of a hostname was 77.

Finally, in case a full name was part of a hostname, the
probability for uniqueness is around 90%. 293 full names were
used, which was still surprisingly high. Ambiguities were—of
course—much rarer. But still, there were two full names that
matched six LDAP users.

Since mDNS was the main contributor of this data, we were
able to do this analysis also on the IETF network data set.
We still needed a list of potential users of the network in
order to create a list of hash values to compare against our
list of hashed hostname tokens. LDAP was not available for
this on the IETF network, but the attendees list is publicly
available. We extracted first and last names from that list
and applied the same method as described before. Overall,
1,487 people attended the meeting. On one SSID (SSID1)
we observed 1,115 different MAC addresses and on the other
(SSID2) we saw a total of 1,500 MAC addresses during the 36
hour measurement time window. The total volume of mDNS
traffic was around 220 MB (SSID1) and 140 MB (SSID2).
Of the hostnames found in the mDNS messages, on SSID1 6
(4) contained both first and last names, 98 (133) contained
last names and 247 (195) contained first names of IETF
participants for SSID1 (respectively SSID2). Of those 148 (98)

would lead to a unique identification of the device owner.
The above was all done automatically using scripts, meaning

some names are probably missed due to hostnames with
initials or nicknames (e.g. “Bill” for “William”). These are
easy to parse for a human but much more difficult to parse in
software. With more effort, the above numbers can therefore
be increased further. Our control experiments showed that our
automated analysis on anonymized data indeed misses some
names a human would easily identify as a nickname or similar.
Also, without anonymization, a second data source such an
LDAP server or the IETF attendees list is not necessary for a
real attacker to infer identities.

D. Combining the data

With the mapping of Dropbox users to LDAP users, we
could attach (hashed) names to some of the nodes in our six
chosen communities. For two of them, we could not identify
any users as the hostnames only revealed ambiguous first
names (community 36 and 56). In one community (19) we
could identify two students, one used the full name and the
other had a unique first name. These two users had the same
course of studies, so we searched in our LDAP data for the
other users in this community where we only had ambiguous
first names from the hostnames. This lead to seven additional
matches based on the course of studies and the time they had
changed their passwords the last time. The LDAP server at
our university does not return the date of creation or semester
for a user. But the data showed most users do not change
their password after they set it once (which probably is at the
creation of the account), so we could calculate the semester
with the help of the date of the last password change. Now
that we knew the course of study and semester for this group,
we could also verify that the online-times of the devices
matched the semester’s schedule after manually identifying
lecture times where all students of the course should be online.

We re-did this for the other three remaining communities
and decided we needed to verify the results of this analysis
since we worked on anonymized data.

E. Data verification

As mentioned before we did multiple control experiments
with groups of students who consented to connect to an access
point where we recorded and analyzed the broadcast data in
the clear. This allowed us to identify the protocols of interest
for our analysis, but also revealed the device naming habits
of many users as described before. If some sort of social
relation between users could be identified (e.g. by a Dropbox
community or—as in this case—if they are connected to the
same access point), the identification of only one member of
this group was instrumental for the identification of multiple
other members. In other words, by just identifying a single
node in the graph, it was possible to identify nodes for which
the hostname information alone was not enough to identify
the node uniquely. This happened in every control experiment
we performed.
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To verify that we in fact did identify the correct course of
studies and students with the help of the Dropbox data we
made an additional set of control experiments. We visited two
lectures, presented our work and showed a community graph
we created from the measurement data which we believed
contained multiple students in those lectures. To ensure the
privacy of each student, we did not include any potentially
sensible data. To verify the graph we asked them (on a
voluntary basis) to write down the MAC address of their
devices, the hostname, and either their initials, full name
or only the first name. For community 54, eight students
said to use the wireless campus network and the Dropbox
desktop application. They also told us they have a Dropbox
share together for their semester. Only four of them had
their notebooks with them, we could match all of them to
the hashed MAC addresses and names we found for their
respective community graph. The first names of the students
without a notebook present also matched the names we found.
We repeated this for another community with similar results.

Additionally, we searched for publicly accessible social
network profiles of the voluntary identified users. Some of the
profiles we found had their list of friends visible. We could see
the majority of the other already identified group members as
their friends. After hashing the names in the list of friends we
could also identify other students from the community which
we previously could not identify because the LDAP search
showed multiple students for the found names.

F. Countermeasures

Broadcast/multicast protocols fulfill important tasks such as
auto-configuration or service/peer discovery. Switching these
services off would clearly not be a satisfying countermeasure
to the potential privacy threads detailed above. Often there
is no easy technical fix for the protocols themselves as the
problem really lies in the ability to combine multiple broadcast
sources. While a technical solution is difficult to achieve, there
are steps to protect oneself against this kind of analysis which
are simple, straightforward and fairly obvious.

In particular, the hostname of a device should never contain
any kind of name or personal information which can identify a
person—that includes initials, nicknames and IDs. As shown,
even the first name alone might be enough to identify a user
if cross-referenced with other data sources. Unfortunately, as
our data has shown, this is a very common practice. Operating
system vendors can actually help advising the user to create
better device and service names as many of them make an
initial suggestion for a device name. Most users are unaware
of the fact that these names will be seen in the clear on the
network. Users have to consider the tradeoff between having a
unique name as hostname which for example helps to identify
a device when using network shares, and a common or random
hostname which helps to protect the privacy at the cost of
convenience.

Secondly, restricting the data visible to non-friends on a
social network profile is helpful if one does not want outsiders
to recreate a social graph. This is obviously true for the

social network alone, but combining this data with trivially
accessible information on the network reveals much more
personal information.

A third countermeasure could be the deactivation of the
Dropbox LAN sync protocol in the Dropbox desktop applica-
tion (or any other broadcast-utilizing protocol or application),
but we do not recommend this as a general solution. This
protocol helps reducing the traffic volume if a share can be
found in the local network. But it is important to keep in mind
that leaving this option activated might reveal connections to
the persons a user shares folders with.

Besides users, network operators should clearly not have
directory services such as LDAP broadly accessible. In addi-
tion, broadcasts can be easily controlled (blocked) on the air
interface on modern access points which would make this kind
of analysis harder (as has been done on the IETF network).
The same does not apply to multicast, in particular in IPv6-
enabled networks.

Finally, broadcast protocol designers should make sure that
as little information as possible can be gleaned from the broad-
cast messages. If temporary IDs or a control back-channel over
a server can be used to achieve the same goal these options
should be taken into consideration. We have written an Internet
draft [7] summarizing our main findings. Together with the
IETF we attempt to detail a set of considerations for broadcast
protocol designers, which include e.g. the ability to control
broadcasts features on e.g. an SSID level, tighter control of
message frequencies, advice on the use of persistent identifiers
and others.

IV. RELATED WORK

There is an existing body of work that has investigated the
properties of campus network traffic and the Dropbox protocol.

The paper from Singh et al. analyzes broadcast data from a
campus network to classify packets as normal and anomalous
traffic [8]. This work examines—like ours—only broadcast
data, but considers only the IP addresses of a sender to
classify the sender as genuine, malicious or unidentified. The
content of the broadcast packets is not further analyzed and no
cross-protocol analysis is done. Kotz/Essien analyze the usage
patterns in a large campus wireless network by observing
the complete traffic passively for eleven weeks [9]. They
found that “residential traffic dominated all other traffic”.
In contrast to our campus, the wireless network included
residential buildings, therefore we can expect a different usage
pattern in our data. However, a follow-up paper by Henderson
et al. analyzing the same campus-wide network shows that the
usage patterns changed dramatically from web traffic to peer-
to-peer and streaming traffic [10]. We did not consider usage
patterns as part of our analysis as we only used broadcast data.
Balachandra et al. did a similar analysis of user behavior and
network performance but for a public wireless LAN [11].

Given the popularity of Dropbox, it is not surprising that
it has been analyzed before. Kholia/Wegrzyn e.g. analyzed
the security aspects of Dropbox by reverse engineering frozen
Python applications [12]. They describe how the host int is
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received by the Dropbox application from the Dropbox server
on startup and that it can—like we have done—be obtained
from the Dropbox LAN sync protocol. Drago et al. character-
ize Dropbox by a passive measurement of all Dropbox protocol
exchanges, i.e. not only broadcasts, to quantify its impact on
the network [13]. This work does not explicitly address privacy
issues but describes that Dropbox announces unique identifiers
for the user (host int) and its shares (namespaces).

Generally speaking, using non-broadcast traffic requires the
observer to be on-path, which is not possible in the general
case. We only used data that any device on the network can
trivially access without being in a special location or having
to rely on certain privileges.

V. CONCLUSIONS

An increasing number of protocols make use of broadcasts
for various purposes. These protocols analyzed in isolation
do usually not reveal much useful information that would
give away personal information of a network user, i.e. do not
reveal the real identity of the user. This can change when
combing information from multiple broadcast protocols and
publicly available data like we have done for this paper to
gather as much data as possible about the network’s user base,
i.e. personal information. Even though initial identification
of some users came directly from carelessly set hostnames,
others could be identified when looking at the social graph
the Dropbox LAN sync protocol reveals. We were surprised
by how much data we could collect and how easy it was
to identify a large number of users of the network as well
as their social contacts. This is indeed troublesome, since
broadcasts are trivially accessible by anyone in the broadcast
domain. Furthermore, there are protocols that include IDs with
which a user can be tracked quite precisely since the ID does
not change often and the protocol broadcasts that ID with a
high frequency. “Traditionally” such IDs were e.g. the MAC
address of an interface, but it turns out that the MAC address
alone today can be misleading sometimes since e.g. sleep
proxies respond to queries on the behalf of other devices. With
multiple unique IDs to choose from, tracking users becomes
increasingly simple and once the connection between any of
these IDs to real users is made, it becomes more and more
easy to identify others using these as a starting point.

The protocols in use are only partly to blame. Their design
can certainly be improved in ways to better hide information,
but the biggest problem is the use of names or other identifiers
in hostnames which is a common practice for a large fraction
of users.

In the particular network we analyzed, we had additional
“support” of an LDAP server, which certainly helped in
automating the identification of users, their current semester
(using a heuristic) and course of study. With some extra
work, this information (and sometimes much more) was often
accessible through other means such as social networks. It
remains future work to apply automation using e.g. Google’s
people search API or the Twitter API for this process. The
other network we analyzed had no LDAP server we could

use for this purpose but a public meeting attendees list was
available. Generally speaking, this helped us to analyze the
network’s user base, but a real attacker likely does not even
need this information. In particular if the attacker tries to attack
a certain owner’s devices, the victim is already known and the
challenge is to figure out which device is owned by the victim.
Broadcast data, as shown in this paper, can make this a trivial
undergoing.

On a final note, the analysis presented in this paper is still
ongoing. Not all protocols have been included and the degree
of automation can still be improved to being able to work on
live data streams. Also, automatically including external data
sources using the APIs mentioned before remains part of our
ongoing efforts, which is difficult though as anonymized data
cannot be used.
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