\#

Compound TCP
draft-sridharan-tcpm-ctcp-00.txt
o

(Collaborat g, HKUST)

e Soepsssee

~Design goals

Efficiency

e Improve throughput by efficiently using the spare
capacity in the network

RTT fairness

e Intra-protocol fairness when competing with flows that
have different RTTs

TCP fairness

e Must not impact performance of regular TCP flows
sharing the same bottleneck

Stability

— . S

~The Compound TCP approach

Synergy between loss and delay based approaches
e Using delay to sense network congestion

* Adaptively adjust aggressiveness based on network
congestion level

One flow, two components
 Loss based component: cwnd (standard TCP Reno)
e Scalable delay-based component: dwnd

e TCP send window is controlled by
win = cwnd + dwnd

\\ M

~CTCP congestion control

Vegas-like early congestion detector

 Estimate the backlogged packets (diff) and compare it
to a threshold, y

Binomial increase when no congestion
win(t +1) = win(t) + o - win(t)"

Multiplicative decrease when loss
win(t +1) = win(t) - (1- 5)

On detecting incipient congestion

e Decrease dwnd and yield to competing flows

e Soepsssee

~CTCP congestion control
cwnd is updated as TCP Reno

dwnd control law
‘dwnd (t) + (« - win(t)* —2)*, if diff <y

dwnd (t +1) = { (dwnd (t) — £ - diff)", if diff >
(win(t)-(1-) —cwnd /2)", if lossis detected

The above control law kicks in only when the flow is in
congestion avoidance and cwnd >= 38 packets. No
changes to slow start phase.

L

—% CTCP (k=3/4)
108 -@- HSTCP -
-6~ TCP Reno
4 -8 STCP]
10 3
10° ¢ 3
10°¢]
10 3
10° L .
107 3
10 - 3
100 E
10'17 Ll Ll Ll Ll | Ll | Ll
10 10° 10° 10”7 10° 10° 10 10° 10° 10

Packet loss rate

CTCP window evolution

cwnd + dwnd

N

Loss Free Period

\'\

~Convergence and RTT fairness

Theorem 1: Two CTCP flows with same round trip
delay converge to fair share.

Theorem 2: Let Thi and Th2 present the throughput of
two CTCP flows with round trip times R1 and R2,
respectively. Then, the following inequality satisfied

2
2 Rl | CTCP

m Regular TCP

/ T

TCP fairness

Bandwidth stolen

e Let P be the aggregated throughput of m regular TCP
flows when they compete with [regular flows. Let Q be
the aggregated throughput when competing with high-
speed flows. The bandwidth stolen by high-speed
protocol flows from regular TCP flowsis , _P-Q

stolen —
P

Theorem 3: CTCP is fair and will not steal bandwidth
from competing flows when B ., where B is the
bottleneck buffer size. L

Effect of Gamma

y fixed at 30 packets. -

This works well on
most scenarios . - =
o e
S /
i -
Delay component £ =
loses ability to detect = .. //
early congestion =
10% &

e Average buffer
allocated for each
flowis <y

Number of CTCP/HSTCP flows

/ ‘\\ s

=

Gamma tuning by emulation

Loss based component of CTCP emulates the behavior
of regular TCP. The cwnd’s of competing flows
converge and should be the same before hitting a
packet loss.

At the end of every round, compute backlogged
packets (Diff _reno) purely based on cwnd the loss
based component.

On a packet loss, choose y = 3/4 * Diff _reno. Update y
using an exponential moving averagey — 11— 1)y + 1-7"

Ensure y;,, <=y <=y, - Experimentally we have
determined y,, =5, Vhigh = 30

/' —_—

=

Summary

CTCP is a promising approach that achieves good
efficiency, RTT fairness and TCP fairness.

Implemented on Windows platform and verified the
above properties in a range of environments.

e Validated on test-beds, Microsoft IT high-speed links,
Microsoft internal deployments, SLAC/Internet2/ESNet
production links.

We believe CTCP is safe for Internet deployment
Experimental RFC on Compound TCP

http://research.microsoft.com/users/dthaler/draft-sridharan-tcpm-ctcp-00.txt
http://research.microsoft.com/users/dthaler/draft-sridharan-tcpm-ctcp-00.txt
http://research.microsoft.com/users/dthaler/draft-sridharan-tcpm-ctcp-00.txt
http://research.microsoft.com/users/dthaler/draft-sridharan-tcpm-ctcp-00.txt
http://research.microsoft.com/users/dthaler/draft-sridharan-tcpm-ctcp-00.txt
http://research.microsoft.com/users/dthaler/draft-sridharan-tcpm-ctcp-00.txt
http://research.microsoft.com/users/dthaler/draft-sridharan-tcpm-ctcp-00.txt
http://research.microsoft.com/users/dthaler/draft-sridharan-tcpm-ctcp-00.txt
http://research.microsoft.com/users/dthaler/draft-sridharan-tcpm-ctcp-00.txt

N

Results

e

=

Implementation & Evaluation

Windows platform implementation

e Microsecond resolution RTT timer

e Dynamic memory management for sample bufters

DummyNet-based Test-bed

Sender

Iperf

Multi-support
TCP/IP stack

MS Windows

Router

DummyNet

FreeBSD 5.3

=

Giga Ethernet

Switch

Receiver

Iperf

Multi-support
TCP/IP stack

MS Windows

=

Giga Ethernet
Switch

Efficiency

700

| —¢— Regular TCP —®— HSTCP - A- CTCP

600

500

400

300

Throughput (Mbps)

200

100

0.0001 0.00001
Packet loss rate

0.000001

RTT fairness
Inverse RTT |1 2 3 6
ratio
Regular TCP |0.9 3.6 6.2 31.6
HSTCP 1 28.9 90.5 233.8
CTCP 1 2.2 41 9.5

Bandwidth stolen (%)

TCP fairness — Effect of y

—©— Regular TCP -5~ HSTCP —A— CTCP-TUBE -% CTCP

1000

900

800

700

600

500

400

Throughput (Mbps)

~4- CTCP - HSTCP —A— CTCP-TUBE 300

0,
100% 200

0% 100

80% \ /“%
70% //

60%

40% /

30% /

20%

10% /

0%

»
»
[
i»

1 2 3 4 5
Number of CTCP/HSTCP flows

0.01

0.001

0.0001 0.00001
Link packet loss rate

0.000001 0

TCP fairness — Varying buffer sizes

Bandwidth stolen

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

-o—CTCP - CTCP-TUBE

-
.

50 150 250 500 1000 2000
Buffer size (packets)

: ra-protocol fairness and/

convergence of y

e ’ml /

.‘ . w
a J\lu '@ﬂwﬁ I‘MH "M‘ M r
350
300 |
T 250 N I\ (] Il |
g I ‘ I”W Time (s)
2 200 } A
g 50 ‘
! J
: ahi i
0
0 :
0 500 1000 1500 2000 2500 3000

Time (s)

Stability

500

—CICPgroupl —CICPgroup2 —— Aggregated

450

350

300

250

200 |

150

100

50

1 L) | 101 151 20 251 30 351 401 451 50 551

Multiple bottlenecks — Utilization

M ﬂows 2 5G/1oms 1G/30ms 2. 5G/1orns
= >
N=400 TCP, K=50 TCP v ‘ s 1 r ‘I——O
M is either 8 CTCP or TCP flows
N flows K flows

Multiple bottlenecks — Throughput

[—e—crep +—er]

N=400 TCP, K=50 TCP
M is either 8 CTCP or TCP flows

