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Design goals
 Efficiency

 Improve throughput by efficiently using the spare 
capacity in the network

 RTT fairness

 Intra-protocol fairness when competing with flows that 
have different RTTs

 TCP fairness

 Must not impact performance of regular TCP flows 
sharing the same bottleneck

 Stability



The Compound TCP approach
 Synergy between loss and delay based approaches

 Using delay to sense network congestion

 Adaptively adjust aggressiveness based on network 
congestion level

 One flow, two components

 Loss based component: cwnd (standard TCP Reno)

 Scalable delay-based component: dwnd

 TCP send window is controlled by 
win = cwnd + dwnd 



CTCP congestion control
 Vegas-like early congestion detector

 Estimate the backlogged packets (diff) and compare it 
to a threshold, γ

 Binomial increase when no congestion 

 Multiplicative decrease when loss

 On detecting incipient congestion

 Decrease dwnd and yield to competing flows
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CTCP congestion control
 cwnd is updated as TCP Reno

 dwnd control law

 The above control law kicks in only when the flow is in 
congestion avoidance and cwnd >= 38 packets. No 
changes to slow start phase. 
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Response function
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CTCP window evolution
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Convergence and RTT fairness
 Theorem 1: Two CTCP flows with same round trip 

delay converge to fair share. 

 Theorem 2: Let Th1 and Th2 present the throughput of 
two CTCP flows with round trip times R1 and R2, 
respectively. Then, the following inequality satisfied
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TCP fairness
 Bandwidth stolen

 Let P be the aggregated throughput of m regular TCP 
flows when they compete with l regular flows. Let Q be 
the aggregated throughput when competing with high-
speed flows. The bandwidth stolen by high-speed 
protocol flows from regular TCP flows is 

 Theorem 3: CTCP is fair and will not steal bandwidth 
from competing flows when , where B is the 
bottleneck buffer size.
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Effect of Gamma
 γ  fixed at 30 packets. 

This works well on 
most scenarios

 Delay component 
loses ability to detect 
early congestion

 Average buffer 
allocated for each 
flow is < γ 
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Gamma tuning by emulation
 Loss based component of CTCP emulates the behavior 

of regular TCP. The cwnd’s of competing flows 
converge and should be the same before hitting a 
packet loss. 

 At the end of every round, compute backlogged 
packets (Diff_reno) purely based on cwnd the loss 
based component. 

 On a packet loss, choose γ = 3/4 * Diff_reno. Update γ 
using an exponential moving average 

 Ensure γlow <= γ <= γhigh . Experimentally we have 
determined γlow = 5 , γhigh  = 30
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Summary
 CTCP is a promising approach that achieves good 

efficiency, RTT fairness and TCP fairness. 

 Implemented on Windows platform and verified the 
above properties in a range of environments. 

 Validated on test-beds, Microsoft IT high-speed links, 
Microsoft internal deployments, SLAC/Internet2/ESNet
production links. 

 We believe CTCP is safe for Internet deployment

 Experimental RFC on Compound TCP 
http://research.microsoft.com/users/dthaler/draft-
sridharan-tcpm-ctcp-00.txt
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Results



Implementation & Evaluation
 Windows platform implementation

 Microsecond resolution RTT timer

 Dynamic memory management for sample buffers

 DummyNet-based Test-bed
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Efficiency
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RTT fairness

Inverse RTT 
ratio

1 2 3 6

Regular TCP 0.9 3.6 6.2 31.6

HSTCP 1 28.9 90.5 233.8

CTCP 1 2.2 4.1 9.5



TCP fairness – Effect of γ
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TCP fairness – Varying buffer sizes 
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Intra-protocol fairness and 
convergence of γ

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000

Time (s)

T
h
ro

u
g
h
p
u
t 

(M
b
p
s
)

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000

First 3 flows enter

Second 3 flows enter

Third 3 flows enter

Last 3 flows enter

Time (s)



Stability



Multiple bottlenecks – Utilization
M flows            2.5G/10ms  1G/30ms   2.5G/10ms

N flows                        K flows

N=400 TCP, K=50 TCP
M is either 8 CTCP or TCP flows
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Multiple bottlenecks – Throughput

N=400 TCP, K=50 TCP
M is either 8 CTCP or TCP flows
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