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~Design goals

Efficiency

e Improve throughput by efficiently using the spare
capacity in the network

RTT fairness

e Intra-protocol fairness when competing with flows that
have different RTTs

TCP fairness

e Must not impact performance of regular TCP flows
sharing the same bottleneck

Stability
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~The Compound TCP approach

Synergy between loss and delay based approaches
e Using delay to sense network congestion

* Adaptively adjust aggressiveness based on network
congestion level

One flow, two components
 Loss based component: cwnd (standard TCP Reno)
e Scalable delay-based component: dwnd

e TCP send window is controlled by
win = cwnd + dwnd
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~CTCP congestion control

Vegas-like early congestion detector

 Estimate the backlogged packets (diff) and compare it
to a threshold, y

Binomial increase when no congestion
win(t +1) = win(t) + o - win(t)"

Multiplicative decrease when loss
win(t +1) = win(t) - (1- 5)

On detecting incipient congestion

e Decrease dwnd and yield to competing flows
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~CTCP congestion control
cwnd is updated as TCP Reno

dwnd control law
‘dwnd (t) + (« - win(t)* —2)*, if diff <y

dwnd (t +1) = { (dwnd (t) — £ - diff )", if diff >
(win(t)-(1- ) —cwnd /2)", if lossis detected

The above control law kicks in only when the flow is in
congestion avoidance and cwnd >= 38 packets. No
changes to slow start phase.
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CTCP window evolution

cwnd + dwnd

N

Loss Free Period
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~Convergence and RTT fairness

Theorem 1: Two CTCP flows with same round trip
delay converge to fair share.

Theorem 2: Let Thi and Th2 present the throughput of
two CTCP flows with round trip times R1 and R2,
respectively. Then, the following inequality satisfied

2
2 Rl | CTCP

m Regular TCP
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TCP fairness

Bandwidth stolen

e Let P be the aggregated throughput of m regular TCP
flows when they compete with [ regular flows. Let Q be
the aggregated throughput when competing with high-
speed flows. The bandwidth stolen by high-speed
protocol flows from regular TCP flowsis , _P-Q

stolen —
P

Theorem 3: CTCP is fair and will not steal bandwidth
from competing flows when B ., where B is the
bottleneck buffer size. L




Effect of Gamma

y fixed at 30 packets. -

This works well on
most scenarios . - =
o e
S /
i -
Delay component £ =
loses ability to detect = .. //
early congestion =
10% &

e Average buffer
allocated for each
flowis <y

Number of CTCP/HSTCP flows
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Gamma tuning by emulation

Loss based component of CTCP emulates the behavior
of regular TCP. The cwnd’s of competing flows
converge and should be the same before hitting a
packet loss.

At the end of every round, compute backlogged
packets (Diff _reno) purely based on cwnd the loss
based component.

On a packet loss, choose y = 3/4 * Diff _reno. Update y
using an exponential moving averagey — 11— 1)y + 1-7"

Ensure y;,, <=y <=y, - Experimentally we have
determined y,, =5, Vhigh = 30
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Summary

CTCP is a promising approach that achieves good
efficiency, RTT fairness and TCP fairness.

Implemented on Windows platform and verified the
above properties in a range of environments.

e Validated on test-beds, Microsoft IT high-speed links,
Microsoft internal deployments, SLAC/Internet2/ESNet
production links.

We believe CTCP is safe for Internet deployment
Experimental RFC on Compound TCP
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Implementation & Evaluation

Windows platform implementation

e Microsecond resolution RTT timer

e Dynamic memory management for sample bufters

DummyNet-based Test-bed

Sender

Iperf

Multi-support
TCP/IP stack

MS Windows

Router

DummyNet

FreeBSD 5.3

=

Giga Ethernet

Switch

Receiver

Iperf

Multi-support
TCP/IP stack

MS Windows

=

Giga Ethernet
Switch




Efficiency
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RTT fairness
Inverse RTT |1 2 3 6
ratio
Regular TCP  |0.9 3.6 6.2 31.6
HSTCP 1 28.9 90.5 233.8
CTCP 1 2.2 41 9.5




Bandwidth stolen (%)

TCP fairness — Effect of y
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TCP fairness — Varying buffer sizes

Bandwidth stolen
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Stability
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Multiple bottlenecks — Utilization

M ﬂows 2 5G/1oms 1G/30ms 2. 5G/1orns
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N=400 TCP, K=50 TCP v ‘ s 1 r ‘I——O
M is either 8 CTCP or TCP flows
N flows K flows

-----------------------------



Multiple bottlenecks — Throughput
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N=400 TCP, K=50 TCP
M is either 8 CTCP or TCP flows



