Re: [TLS] Using Brainpool curves in TLS

Michael D'Errico <mike-list@pobox.com> Wed, 16 October 2013 17:02 UTC

Return-Path: <mike-list@pobox.com>
X-Original-To: tls@ietfa.amsl.com
Delivered-To: tls@ietfa.amsl.com
Received: from localhost (localhost [127.0.0.1]) by ietfa.amsl.com (Postfix) with ESMTP id 7B5BB11E8182 for <tls@ietfa.amsl.com>; Wed, 16 Oct 2013 10:02:39 -0700 (PDT)
X-Virus-Scanned: amavisd-new at amsl.com
X-Spam-Flag: NO
X-Spam-Score: -2.599
X-Spam-Level:
X-Spam-Status: No, score=-2.599 tagged_above=-999 required=5 tests=[BAYES_00=-2.599]
Received: from mail.ietf.org ([12.22.58.30]) by localhost (ietfa.amsl.com [127.0.0.1]) (amavisd-new, port 10024) with ESMTP id NIeQdSPCua6E for <tls@ietfa.amsl.com>; Wed, 16 Oct 2013 10:02:34 -0700 (PDT)
Received: from sasl.smtp.pobox.com (a-pb-sasl-quonix.pobox.com [208.72.237.25]) by ietfa.amsl.com (Postfix) with ESMTP id BAEEC11E8125 for <tls@ietf.org>; Wed, 16 Oct 2013 10:02:34 -0700 (PDT)
Received: from sasl.smtp.pobox.com (unknown [127.0.0.1]) by a-pb-sasl-quonix.pobox.com (Postfix) with ESMTP id B3E49E2B4; Wed, 16 Oct 2013 13:02:32 -0400 (EDT)
DKIM-Signature: v=1; a=rsa-sha1; c=relaxed; d=pobox.com; h=message-id :date:from:mime-version:to:cc:subject:references:in-reply-to :content-type:content-transfer-encoding; s=sasl; bh=s11AtXD+Xxue igei+9Qdb2gu2zU=; b=IxT7U8MOxAbMqatzlYEsxKekPxg5iHJhXiKYWrEQO2+2 mT0kyUK0tXtSDvpxnBoahOBkYnJnDTzeaxkT7c+cKobj4EZJSHbo9OgGxmf4qLTk 2p784KncxHjWBw+0B981lljsdnIAdr2Oh2cDTGTQfK+ONpLjdINEL0Hx3W/ybV4=
DomainKey-Signature: a=rsa-sha1; c=nofws; d=pobox.com; h=message-id:date :from:mime-version:to:cc:subject:references:in-reply-to :content-type:content-transfer-encoding; q=dns; s=sasl; b=qUF4x+ A1kkuDGdebSB2U60lZRJEdZKBabAcO95XRD82gN7iR2rGlvP1Igucan0P+8HTL14 LNRQ5pShJV17C0++XJ5TQpiZmxqMI2rBeqjKez6npoSa365eEUZUh3ZDHUyq8DXf gvwxbGpTBIuEGZOVVvwsbOR1ZUQZiYljNtcgg=
Received: from a-pb-sasl-quonix.pobox.com (unknown [127.0.0.1]) by a-pb-sasl-quonix.pobox.com (Postfix) with ESMTP id A8910E2B3; Wed, 16 Oct 2013 13:02:32 -0400 (EDT)
Received: from iMac.local (unknown [24.234.153.62]) (using TLSv1 with cipher DHE-RSA-AES256-SHA (256/256 bits)) (No client certificate requested) by a-pb-sasl-quonix.pobox.com (Postfix) with ESMTPSA id 0DF60E2B0; Wed, 16 Oct 2013 13:02:31 -0400 (EDT)
Message-ID: <525EC6A6.70209@pobox.com>
Date: Wed, 16 Oct 2013 10:02:30 -0700
From: Michael D'Errico <mike-list@pobox.com>
User-Agent: Thunderbird 2.0.0.24 (Macintosh/20100228)
MIME-Version: 1.0
To: Johannes Merkle <johannes.merkle@secunet.com>
References: <525C11B5.2050604@secunet.com> <525CEFA4.2030903@funwithsoftware.org> <01b901cec9a0$004e12b0$00ea3810$@offspark.com> <CACsn0ckOnrQTOLdUo9gT8hbTx4cEqX9CP6=BRFYtpV1CpT7HXQ@mail.gmail.com> <525E3E6B.1020604@secunet.com> <CA+cU71=ws7Uh6OuJhMdU521Uvm1zj=agb3HPNZudpX1R6v7mXA@mail.gmail.com> <525EA1C6.5030909@elzevir.fr> <525EAD7D.7030508@secunet.com>
In-Reply-To: <525EAD7D.7030508@secunet.com>
Content-Type: text/plain; charset="ISO-8859-1"; format="flowed"
Content-Transfer-Encoding: 7bit
X-Pobox-Relay-ID: BF30EE4A-3684-11E3-96B7-0A540E5B5709-38729857!a-pb-sasl-quonix.pobox.com
Cc: TLS Mailing List <tls@ietf.org>
Subject: Re: [TLS] Using Brainpool curves in TLS
X-BeenThere: tls@ietf.org
X-Mailman-Version: 2.1.12
Precedence: list
List-Id: "This is the mailing list for the Transport Layer Security working group of the IETF." <tls.ietf.org>
List-Unsubscribe: <https://www.ietf.org/mailman/options/tls>, <mailto:tls-request@ietf.org?subject=unsubscribe>
List-Archive: <http://www.ietf.org/mail-archive/web/tls>
List-Post: <mailto:tls@ietf.org>
List-Help: <mailto:tls-request@ietf.org?subject=help>
List-Subscribe: <https://www.ietf.org/mailman/listinfo/tls>, <mailto:tls-request@ietf.org?subject=subscribe>
X-List-Received-Date: Wed, 16 Oct 2013 17:02:39 -0000

Johannes Merkle wrote:
> 
> sqrt(2) and sqrt(3) are much less fundamental than Pi or e. If you
> ask mathematicians for the most fundamental constants, you will get
> 1, Pi, e, i, and maybe 2.
> 
> I am not sure how to use the imaginary unit i in an algorithm though ;-)

Well, they are all related to each other as 1 - e^(i * Pi) = 2 so you
can omit one of them.  :-)

Mike