
NIST Publication #904682
Measurement Science for Complex Information Systems

HOW TO MODEL A TCP/IP NETWORK USING ONLY 20 PARAMETERS

Kevin L. Mills

Edward J. Schwartz

Jian Yuan

Information Technology Laboratory Dept. of Electrical & Computer Eng. Dept. of Electronic Engineering

National Inst. Of Stds. & Tech. Carnegie Mellon University Tsinghua University
Gaithersburg, MD 20899, USA Pittsburgh, PA 15213, USA Beijing, 100084, P. R. CHINA

ABSTRACT

Most simulation models for data communication networks encompass hundreds of parameters that can each take on millions
of values. Such models are difficult to understand, parameterize and investigate. This paper explains how to model a modern
data communication network concisely, using only 20 parameters. Further, the paper demonstrates how this concise model
supports efficient design of simulation experiments. The model has been implemented as a sequential simulation called Me-
soNet, which uses Simulation Language with Extensibility (SLX). The paper discusses model resource requirements and the
performance of SLX. The model and principles delineated in this paper have been used to investigate parameter spaces for
large (hundreds of thousands of simultaneously active flows), fast (hundreds of Gigabits/second) simulated networks under a
variety of congestion control algorithms.

1 INTRODUCTION

Paxson and Floyd (1997) describe many difficult problems that impede simulation of large data communication networks,
and recommend two main coping strategies: search for invariants and carefully explore the parameter space. Unfortunately,
typical network simulators (e.g., Fall and Varadhan 2009, SSFNet 2009, Tyan et al. 2009) use hundreds of parameters that
can each take on millions of values. Such simulations can be difficult to configure and usually require infeasible resources to
explore the parameter space. Several researchers (Riley et al. 2004, Yaun et al. 2003, Zeng et al. 1998) investigate parallel
techniques as a means to simulate larger, faster networks. Unfortunately, such techniques do not reduce the parameter space,
which remains difficult to configure and continues to require significant resources when conducting careful exploration. As
pointed out by Ammar (2005), the problems identified by Paxson and Floyd have gone largely unsolved. In this paper, we
describe how to model a modern data communication network, including the transmission control protocol (TCP) and Inter-
net protocol (IP), using only 20 parameters. We implemented the model using SLX1 (Henriksen 2000) as a sequential simula-
tion, called MesoNet. As we demonstrate, a concise parameter space can be searched efficiently and effectively using sequen-
tial simulations deployed in parallel, where each simulation explores a selected configuration of parameters. Elsewhere (Mills
et al. 2010), we use MesoNet to study a variety of congestion control algorithms proposed for the Internet. In that study, we
perform a sensitivity analysis of the model’s parameter space, providing key insights that guide design of the experiments.
Here, we discuss only two sample experiments to illustrate the utility and resource requirements of MesoNet.
 The paper makes three contributions: (1) defines a concise TCP/IP network simulation model that can be configured us-
ing only 20 parameters; (2) shows how the model can be applied to design efficient experiments; and (3) discusses resource
requirements for the model and selected performance properties of SLX, the underlying simulation platform. The ideas con-
tained in this paper facilitate feasible exploration of the parameter space in large network simulations and should also stimu-
late other researchers to develop concise models for large distributed systems, such as computational grids and clouds.

The paper is organized in six main sections. In Sec. 2 we explain why the parameter space of simulation models can be
difficult to explore and then discuss some theoretical techniques for reducing the search space. We also show the substantial
reduction we were able to achieve in formulating our model. In Sec. 3 we introduce and define the 20 parameters of our mod-
el. Sec. 4 outlines two sample experiments, illustrating the utility of our reduced model. Sec. 5 discusses resource require-

1 Any mention of commercial products within this paper is for information only; it does not imply recommendation or en-
dorsement by NIST. Though MesoNet source code is in the public domain, the model requires SLX, a commercial simulation
language and runtime environment developed and sold by Wolverine Software.

Mills, Schwartz and Yuan

ments for our model and also related SLX performance characteristics. In Sec. 6 we discuss work by others who aim to ena-
ble simulation of large data networks. We conclude and suggest future work in Sec. 7.

2 SEARCH-SPACE REDUCTION: THEORY & PRACTICE

As illustrated in Fig. 1(a), a simulation model can be viewed as a function transforming a set of input parameters, x1 to xn, in-
to a set of responses, y1 to ym. Each input parameter can take on a range of values, 1 to k in our example, defining a parameter
space of size kn, which can be very large. Fig. 1(c) shows the infeasible search space arising from a communication network
model with n = 1000 parameters that can each take on k = 232 values.

Figure 1: (a) Functional representation of a simulation model; (b) Theoretical explanation of search-space reduction;
(c) Search-space reduction applied to MesoNet simulation model

2.1 Theory of Search-space Reduction

Fig. 1(b) illustrates two processes that can help reduce the search space: reduce the number of parameters in the model and
reduce the number of parameter configurations through judicious experiment design. The process of model reduction in-
volves two main steps. First, restrict model parameters to only that set of (n – r1) factors relevant to the questions under in-
vestigation. Second, identify parameters that can be clustered together as facets of a single factor, leaving a reduced set of
factors numbering (n – r1 – r2). These two steps require expertise within the domain of investigation. In many cases, a re-
duced model parameter space remains infeasible to search, requiring two additional reduction steps to limit the number of
experiments. The first step involves selecting only two levels to assign for each parameter – reducing k to 2. Choosing appro-
priate levels requires domain knowledge. If the reduced search space of 2(n-r1-r2) remains too expensive, then one can adopt an
orthogonal fractional factorial (OFF) experiment design (Box, Hunter and Hunter 2005) to further reduce the space to 2(n-r1-r2-

r3), providing the most information possible for the available resources.

2.2 Search-space Reduction in Practice

Fig. 1(c) illustrates the practical reduction we achieved in constructing a communication network model intended to compare
proposed congestion control algorithms for the Internet. Assuming a detailed network model requires 1000 parameters, we
identified 64 parameters germane to our investigation, achieving an initial reduction of r1 = 936. Subsequently, we grouped
some of the 64 parameters together to create a reduction of r2 = 44, leaving the 20-parameter model that we describe below
in Sec. 3. In Sec. 4 we give examples using a two-level, OFF experiment design to further reduce the search space.

3 THE MODEL

Table 1 identifies the 20 parameters composing our model of a TCP/IP network. We organize the parameters into five catego-
ries: (1) network configuration, (2) sources and receivers, (3) user behavior, (4) protocols and (5) simulation and measure-
ment control. We discuss each category in turn, defining every parameter in detail.

y1, …, ym = f(x1|[1,…,k], …, xn|[1,…,k])

Response State‐Space Stimulus State‐Space

y1, …, ym = f(x1|[1,…,k], …, xn|[1,…,k])

Response State‐Space Stimulus State‐Space

 kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

Model Reduction

Experiment Reduction

 kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

 kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

Model Reduction

Experiment Reduction

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 936

O(109633) [1080 = atoms in visible universe]

(232)64 O(10616)

(232)20
r2 = 44

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

Model
Reduction

Experiment
Reduction

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 936

O(109633) [1080 = atoms in visible universe]

(232)64 O(10616)

(232)20
r2 = 44

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 936

O(109633) [1080 = atoms in visible universe]

(232)64 O(10616)

(232)20
r2 = 44

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 936

O(109633) [1080 = atoms in visible universe]

(232)64 O(10616)

(232)20
r2 = 44

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

Model
Reduction

Experiment
Reduction

(a)

(b) Theory of Search-space Reduction (c) Search-space Reduction Applied

y1, …, ym = f(x1|[1,…,k], …, xn|[1,…,k])

Response State‐Space Stimulus State‐Space

y1, …, ym = f(x1|[1,…,k], …, xn|[1,…,k])

Response State‐Space Stimulus State‐Space

 kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

Model Reduction

Experiment Reduction

 kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

 kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

Model Reduction

Experiment Reduction

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 936

O(109633) [1080 = atoms in visible universe]

(232)64 O(10616)

(232)20
r2 = 44

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

Model
Reduction

Experiment
Reduction

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 936

O(109633) [1080 = atoms in visible universe]

(232)64 O(10616)

(232)20
r2 = 44

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 936

O(109633) [1080 = atoms in visible universe]

(232)64 O(10616)

(232)20
r2 = 44

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 936

O(109633) [1080 = atoms in visible universe]

(232)64 O(10616)

(232)20
r2 = 44

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

Model
Reduction

Experiment
Reduction

(a)

(b) Theory of Search-space Reduction (c) Search-space Reduction Applied

Mills, Schwartz and Yuan

Table 1: Model Parameters
Category Identifier Name

Network
Configuration

X1 Topology
X2 Propagation Delay
X3 Network Speed
X4 Buffer Provisioning

Sources &
Receivers

X5 Number of Sources & Receivers
X6 Distribution of Sources
X7 Distribution of Receivers
X8 Source & Receiver Interface Speeds

User
Behavior

X9 Think Time
X10 Patience
X11 Web Object Size for Browsing
X12 Proportion & Size of Larger File Downloads
X13 Selected Spatiotemporal Congestion
X14 Long-lived Flows

Protocols
X15 Congestion Control Algorithms
X16 Initial Congestion Window Size
X17 Initial Slow Start Threshold

Simulation &
Measurement
Control

X18 Measurement Interval Size
X19 Simulation Duration
X20 Startup Pattern

3.1 Network Configuration

A network configuration requires a topology (parameter X1) of routers and links, as shown for example in Fig. 2, adapted
from the topology of a modern Internet service provider. MesoNet supports topologies with up to three hierarchical router
tiers: backbone routers (A-P in Fig. 2), point of presence (PoP) routers (A1-P2) and access routers (A1a-P2g). To model hete-
rogeneity in network access, MesoNet allows three different types of access routers: D-class (e.g., eight red nodes in Fig. 2,
which connect directly to backbone routers), F-class (e.g., 40 green nodes) and N-class (e.g., 122 small gray nodes). Classify-
ing access routers enables different speeds to be assigned to each class. As discussed later, sources and receivers compose a
fourth tier distributed below access routers. Packets flowing between a source-receiver pair follow a single ingress/egress
path between an access router and a top-tier backbone router. In MesoNet ingress/egress paths are not subject to propagation
delays. Propagation delays on backbone links are an intrinsic property of the topology. Table 2 shows propagation delays as-
sociated with each of the 24 backbone links in Fig. 2. A topology also specifies the paths taken by packets flowing among
backbone routers. Given a cost metric for each link (Table 2 col. 3), one can use Dijkstra’s shortest-path first (or equivalent)
algorithm to generate least-cost paths. The topology in Fig. 2 and cost metrics in Table 2 generate 240 backbone paths with
an average length of 3.63 router hops. Adding in the hops for sources and receivers to reach the backbone routers increases
the average path length to 9.53 hops. As illustrated in Table 2 (cols. 5 and 6), parameter X2 can scale down (e.g., X2 = 0.5)
or up (e.g., X2 = 2) propagation delays on all backbone links.
 Unlike real networks, where links have transmission speeds and associated buffers, MesoNet assigns transmission speeds
to routers. Each router multiplexes packet forwarding from a single buffer shared among all attached links. Because MesoNet
packets have no size, router speeds are assigned in units of packets/millisecond. Six parameters, shown in Table 3 col. 1, are
needed to define the speed of all router classes (col. 3), using relationships shown in col. 4. Note that every defined relation-
ship includes parameter s1. By assigning values to the remaining parameters, e.g., as in col. 2, one can establish reasonable
engineering relationships among the speeds of the various router classes. Then, by equating s1 with model parameter X3, the
speeds of all routers in a topology can be scaled appropriately by changing the value of X3, as shown in cols. 5 and 6, which
indicate the speed of each router class in packets/millisecond.

To provision router buffers, MesoNet allows buffer size (in packets) to be selected using any of four algorithms: (1) RTT
x C, recommended practice (Bush and Meyer 2003), where RTT is the average round-trip time among all backbone routes and
C is the capacity, derived from X3, for the router class; (2) (nCRTT ×), recommended by some researchers (Appenzeller
et al. 2004), where n is the expected number of flows transiting a router; (3) the average of (1) and (2); or (4) a designated
value. In addition, a variable, Qfactor, can scale the buffer sizes computed by the chosen algorithm. Thus, parameter X4 may
be a value pair (buffer sizing algorithm, Qfactor) or one may fix the buffer sizing algorithm and equate X4 to Qfactor or fix
Qfactor and equate X4 to a buffer sizing algorithm.

Mills, Schwartz and Yuan

Figure 2: Three Tier Topology with 16 Backbone Routers (A-P), 32 Point of Presence Routers (A1-P2) and 170 Access Rou-
ters (A1a-P2g) – 8 red and 40 green Access Routers may operate at different speeds from the 122 others

Table 2: Topology Link Characteristics and Scaling Propagation Delay with Parameter X2

Link# Endpoints Cost Metric Prop. Delay (ms) X2 = 0.5 X2 = 2
1 A-B 50 21 10.5 42
2 B-C 10 25 12.5 50
3 B-D 50 8 4 16
4 B-L 223 75 37.5 150
5 C-H 100 12 6 24
6 D-E 10 10 5 20
7 D-F 108 33 16.5 66
8 E-G 100 33 16.5 66
9 F-G 10 7 3.5 14

10 F-H 50 12 6 24
11 F-I 55 22 11 44
12 G-O 104 23 11.5 46
13 G-P 110 19 9.5 38
14 I-H 10 14 7 28
15 I-J 50 8 4 16
16 I-K 147 22 11 44
17 J-L 60 20 10 40
18 K-L 50 7 3.5 14
19 L-M 50 12 6 24
20 L-N 39 6 3 12
21 L-O 10 14 7 28
22 M-O 10 6 3 12
23 N-O 10 8 4 16
24 O-P 10 14 7 28

Mills, Schwartz and Yuan

Table 3: Defined Speed Relationships among Router Classes used to Scale Router Speeds with Parameter X3

Parameter Value Speed Relationships Speed Scaling with X3
s1 X3 Router Class Speed X3 = 800 X3 = 1600
s2 4 Backbone s1 x BBspeedup 1600 3200
s3 10 PoP s1/ s2 400 800
BBspeedup 2 N-Class s1/ s2/ s3 40 80
Bfast 2 F-Class s1/ s2/ s3 x Bfast 80 160
Bdirect 10 D-Class s1/ s2/ s3 x Bdirect 400 800

3.2 Sources and Receivers

Given a three-tier topology of routers and links, a fourth tier of sources and receivers must be created and then distributed
under (and attached to) access routers. Sources equate to computers that have information that receivers wish to download.
The model fixes the number of receivers to be four times the number of sources. The number of sources in a topology should
be suited to the network speed, otherwise the network will experience an inappropriate traffic load. To accommodate this en-
gineering relationship, the model includes a variable, baseSources, which should be set to a value appropriate for the network
speed. Model parameter X5 serves as a multiplier to scale the number of sources and receivers. For example, given that base-
Sources = 100 and X5 = 3, then about 300 sources and 1200 receivers would be attached to each access router – so the topol-
ogy in Fig. 2, which has 170 access routers, would contain about 51,000 sources and 204,000 receivers. These numbers are
only approximate because, as discussed next, changing the distribution of sources and receivers causes adjustments.

Table 4: Sample Computation of Number and Distribution of Sources and Receivers

(given Fig. 2 and baseSources = 100, X5 = 3, probNs = 0.1, probNsf = 0.6, probNr = 0.8, probNrf = 0.1)
Class #routers srcs/router #srcs %srcs rcvrs/router #rcvrs %rcvrs Flow class %flows

N-class 122 90 10,980 31.6 960 117,120 95.3 NN-flows 30.1
FN-flows 60.5

F-class 40 540 21,600 62.2 120 4,800 3.9 FF-flows 2.4
DN-flows 6.1

D-class 8 270 2,160 6.2 120 960 0.8 DF-flows 0.74
DD-flows 0.05

 Recall that access routers come in three classes, as show in Table 4 col. 1. The precise number of sources under access
routers of each type can be adjusted by assigning the probability, probNs, a source is under an N-class router and the proba-
bility, probNsf, a source is under an F-class router. The probability a source is under a D-class router is then 1 – (probNS +
probNsf). For example, if each router class has a target of 300 sources, then the total number of sources under three routers,
one of each class will be (3 x 300 =) 900. Assigning probNs = 0.1 and probNsf = 0.6 would reapportion the 900 routers as
shown in Table 4 col. 3. Given the quantity of routers in each class (Table 4 col. 2), the total number of sources under each
router class would be as shown in Table 4 col. 4, and so the aggregate number of sources in the topology would be 34,740 in-
stead of 51,000. Table 4 col. 5 gives the proportion of sources in the topology located under each router class. Similar com-
putations can be made by assigning probNr and probNrf to reapportion receivers, as shown in cols. 6 and 7, where the total
number of receivers in the topology is reduced to 122,880. Table 4 col. 8 gives the proportion of receivers in the topology lo-
cated under each router class. As discussed below, each source will periodically transfer a flow of packets, after randomly se-
lecting a receiver from under a parent backbone router that differs from the source’s parent backbone router. Since access
routers of different classes have differing speeds, the locations of a source-receiver pair influence the characteristics of the
path for each flow of packets. Table 4 col. 9 lists six possible flow classes, as determined by the location of the source and
receiver for a flow. For the parameters given in the caption of Table 4, col. 10 shows the proportion of flows in each class.
One can view NN-flows as a form of peer-to-peer (P2P) traffic, while the remaining flow classes can be viewed as Web-
centric traffic. Table 4 represents a network with about 30% P2P flows and 70% Web-centric flows. Model parameter X6
specifies the distribution of sources with a pair of probabilities (probNs, probNsf) and parameter X7 specifies the distribution
of receivers with another pair of probabilities (probNr, probNrf).
 The final property of sources and receivers concerns the maximum speed at which they can transfer packets to the net-
work. The model includes two settings: Hbase and Hfast, which specify a number of packets/millisecond. For example set-
ting Hbase = 8 corresponds to 8,000 packets/second, which equates to 96 Mbps, assuming 1500-byte packets. Similarly, set-

Mills, Schwartz and Yuan

ting Hfast = 80 corresponds to 80,000 packets/second, which equates to 960 Mbps. Parameter X8 specifies the probability
that a source or receiver connects at a speed of Hfast.

3.3 User Behavior

User behavior is modeled through periodic activity by sources. As shown in Fig. 3, sources cycle between thinking and send-
ing2. As explained later, a source may begin in either state. Prior to entering the Thinking state, a source selects a random
residence time from an exponential distribution with a mean given by parameter X9. Upon expiration of residence, the source
enters the Sending state, where a flow of packets is transmitted to a randomly selected receiver. Once all packets in a flow
are acknowledged, the source follows the Finished transition, reentering the Thinking state. Flows may be associated with
human users that have finite patience or with programs that have infinite patience. Human users expect short flows to be
completed within a reasonable time and long flows to progress at a reasonable rate. Violation of these expectations cause a
source to enter the thinking state, following the appropriate failure transition: Too Slow or Too Long. Parameter X10 speci-
fies the probability that a source has finite patience.

Figure 3: User Behavior Represented through Periodic Activity by Sources

Prior to entering the Sending state, a source selects a Web object size (in packets) from a Pareto distribution with a shape

parameter and a mean , which define parameter X11. Alternatively, one can fix and use X11 as the mean size. We adopt
a Pareto distribution to mimic long-tailed file sizes observed in Internet traffic (Crovella, Taqqu and Bestavros 1998). The
model also allows sources to transmit larger files in three categories: documents, software updates and movies, with corres-
ponding multipliers (Fx, Sx and Mx) that scale the selected Web object to a larger size. The model includes variables to speci-
fy a corresponding probability of transmission (Fp, Sp and Mp) for each category. Parameter X12 can be a set of multiplier
and probability pairs {(Fx, Fp), (Sx, Sp), (Mx, Mp)} or the multipliers may be fixed, allowing X12 to specify a set of proba-
bilities for transferring larger files. The probability of a Web object is 1 – (Fp + Sp + Mp). The model also allows simulation
of spatiotemporal congestion by specifying a time period during which jumbo files will be transferred on every DD flow. Pa-
rameter X13 specifies this with a set of three variables: proportion (Jon) of simulated time before jumbo files commence,
proportion (Joff) after which jumbo transfers cease and a multiplier (Jx) applied to convert Web object sizes into jumbo files.

The model accommodates simulation of long-lived flows that, once activated, send as many packets as possible in the
course of a simulation. Each long-lived flow is specified by four parameters: proportion (Lon) of simulated time before the
flow starts, access routers under which the source (sLocation) and receiver (rLocation) are located and identifier (sType) for
the congestion control algorithm used by the source. If no sType is selected from Table 5 col. 2, then the congestion control
algorithm will be assigned using the probabilities given in col. 3. Each parameter set, LLFx = {Lon, sLocation, rLocation,
sType}, describes a single long-lived flow x. Parameter X14 consists of a set of sets {LFF1, …, LFFn} describing all long-
lived flows in an experiment. MesoNet measures long-lived flows in detail, which permits observation of intricate behaviors
in individual flows. In addition, long-lived flows can be positioned deterministically within a topology to investigate the ef-
fects of spatiotemporal congestion on individual flows. Finally, because empirical results are available for long-lived flows

2 For simplicity, Fig. 3 omits a flow connection phase that occurs prior to sending, and also the potential for connection fail-
ure after which a source reenters the thinking state.

Mills, Schwartz and Yuan

sharing a bottleneck link, the behavior of MesoNet congestion control algorithms can be verified against empirical measure-
ments (Li, Leith and Shorten 2007).

3.4 Protocols

MesoNet was created to compare congestion control algorithms, which regulate the rate at which sources send packets on in-
dividual network flows. A congestion control algorithm allows a source to estimate the transmission rate available to a flow,
to attempt to increase the rate, and to reduce the rate in response to packet losses, which are assumed to result from network
congestion on a path. Each source requires a congestion control algorithm, such as TCP, which is implemented in most com-
puters connected to the Internet. In outline, standard TCP probes (during a process known as initial slow start) for available
transmission capacity on a flow by first sending a few packets and then increasing the rate exponentially as acknowledgments
arrive. When a packet is lost, TCP switches to a process known as congestion avoidance, reducing transmission rate by 50%
and then increasing the rate linearly on subsequent acknowledgments. When repeated, the resulting behavior exhibits a saw-
tooth pattern of increasing and decreasing transmission rate on a flow. As we explain elsewhere (Mills et al. 2010),various
researchers have critiqued the efficacy of this behavior in future networks with increased capacities, leading to several pro-
posals for alternate congestion control algorithms intended to coexist with (or replace) standard TCP. MesoNet includes
models for seven congestion control algorithms, as shown in Table 5 (consult Mills et al. 2010 for the details of each algo-
rithm). The variables listed in col. 3 can be set to specify the probability that a source implements the related congestion con-
trol algorithm. Model parameter X15 comprises this list of probabilities (which must sum to 1). We validated our model for
each congestion control algorithm against empirical results (Li, Leith and Shorten 2007 and Leith et al. 2008) from measured
behavior of long-lived flows in a small topology of Linux nodes. The empirical results plotted congestion window (cwnd) vs.
time for competing flows transiting a bottleneck link under various combinations of transmission capacity, buffer size and
propagation delay. We simulated the same parameter combinations and generated plots matching the empirical plots.

Table 5: MesoNet Congestion Control Algorithms, Identifiers and Probabilities of Source Implementation
Congestion Control Algorithm Identifier Probability of Source Implementation
Transmission Control Protocol (TCP) 1 prTCP
High Speed TCP (HSTCP) 2 prHSTCP
Compound TCP (CTCP) 3 prTCP
Scalable TCP (STCP) 4 prSTCP
FAST AQM Scalable TCP (FAST) 5 prFAST
Hamilton TCP (HTCP) 6 prHTCP
Binary Increase Congestion (BIC) 7 prBIC

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40

cw
nd

time

initial cwnd

initial sst

exponential
increase

linear increase

Figure 4: Illustration of Initial Slow Start and Switch to Congestion Avoidance Absent Packet Loss

The six alternate congestion control algorithms listed in Table 5 only alter the TCP congestion avoidance process, for

initial rate probing they all use the standard TCP initial slow start process. Upon connecting to a receiver, a source first sends
a specified number of packets, known as the initial congestion window. As acknowledgments arrive from the receiver, the
source increases the cwnd exponentially. Upon first lost packet, the source switches to congestion avoidance and adopts the

Mills, Schwartz and Yuan

procedures associated with the congestion control algorithm implemented by the source. Absent any losses, a source switches
to congestion avoidance once the congestion window reaches an initial slow start threshold (sst). Fig. 4 illustrates this process
for TCP. Model parameter X16 specifies the initial cwnd and X17 defines the initial sst.

3.5 Simulation Measurement and Control

MesoNet measures numerous aspects of each simulation run. Most measurements are made as time series, such as illustrated
in Fig. 5, which sample system state at periodic intervals (parameter X18) of size M. Model parameter X19 is the number
(MI) of measurement intervals to be recorded, so simulation duration is M x MI.

Figure 5: Count of Flows in the Sending State Measured every M = 200 ms for MI = 250 intervals – Simulation Duration (.2 s

x 250 =) 50 s – prON = 0.25, prONsecond = 0.08, prONthird = 0.17

Model parameter X20 comprises a set of three variables: (1) probability a source starts in the Sending state (prON), (2)
probability (prONsecond) a source exits from an initial Thinking state after a random time with mean 33% of X9 and (2)
probability (prONthird) a source exits from initial Thinking after a random time with mean 66% of X9. Sources exit initial
Thinking after a random time with mean X9 with probability 1 – (prON + prONsecond + prONthird). Accelerating source
startup helps a system to reach equilibrium more quickly than would otherwise occur. Fig. 5 illustrates use of parameter X20,
which leads to three spikes in the count of sending flows, as each wave of sources enters the Sending state.

4 TWO SAMPLE EXPERIMENTS

To demonstrate the utility of our model, we describe two related experiments. We simulated a fixed topology based on the
Abilene network, explained elsewhere (Mills et al. 2010), operating for 60 minutes with sources transferring a mix of Web
objects, documents, software downloads and movies. Sources use either standard TCP or one of seven alternate congestion
control algorithms3. In one experiment, we simulated a modest sized network with up to 26,085 sources running at moderate
speed (up to 1600 packets/ms). In the second experiment, we increased network size and speed by a factor of 10.

Based on earlier sensitivity analyses (Mills et al. 2010), we identified nine of the 20 model parameters to vary and se-
lected two values for each, which created (29 =) 512 parameter configurations. Comparing seven congestion control algo-
rithms under all configurations would require 3584 simulations, giving a total of 7168 for both experiments. Our facilities
and available time allowed us to execute < 256 runs per experiment. For this reason, we constructed a 29-4 OFF design, yield-
ing 32 configurations against which to run each of the congestion control algorithms. This required (32 x 7 =) 224 simulations
per experiment. Fig. 6 shows the 32 configurations used for experiment #1, where baseSources = 100. We adopted the router
speed relationships and values shown in Table 3. We fixed the buffer-sizing algorithm to RTT x C, equating parameter X4
with Qfactor, which we varied. Since X11 leads to variation in file sizes, we fixed multipliers for larger files (Fx = 10, Sx =
1000 and Mx =10000) and equated factor X12 with the probabilities of transferring files of each size. We set Hbase = 8 and
Hfast = 80. We used parameter X15 to specify the probability a source implements the designated alternate congestion con-
trol algorithm in place of TCP. For the second experiment, we increased baseSources to 1000 and multiplied settings for
network speed (X3) by 10 to yield 32 additional conditions, requiring another 224 simulations. Table 6 reports the values we
fixed across all simulations for the remaining 11 model parameters.

3 We added FAST-AT, a version of FAST that dynamically adjusts one of the algorithm’s parameters.

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250
Time

Se
nd

in
g

Fl
ow

s

Mills, Schwartz and Yuan

5 MODEL IMPLEMENTATION & RESOURCE REQUIREMENTS

For each sample experiment, Table 7 reports the aggregate number of flows completed and data packets sent, as well as the
per run average, minimum and maximum. Table 8 recounts the processing (CPU) hours required for both experiments, as
well as the average memory usage. Table 7 shows that an order of magnitude increase in network size and speed leads to a
tenfold increase in flows completed and packets sent. Table 8 shows a twelvefold increase in memory requirements, while
processing time increased about 16 times. These resource increases must be understood in the context of SLX, which comes
in two versions, requiring either 32-bit or 64-bit address space. Simulating the larger, faster network required SLX-64, while
the smaller, slower network could be simulated with SLX-32. In SLX-64, address references require more memory. This ac-
counts for the extra increase in memory usage. In addition, 64-bit operations run more slowly than 32-bit operations and the
large, fast model has larger event lists, which require SLX additional time to manage.

Figure 6: Definition of the 32 Parameter Configurations used to Simulate a Modest Size, Moderate Speed Network
(red values for X3 were multiplied by 10 and baseSources increased to 1000 to Simulate a Larger, Faster Network)

Table 6: Fixed Values Assigned to 11 Model Parameters for All Simulation Runs Reported Here

Parameter Assigned Value
X1 Abilene Topology (Backbone: 11 routers and 14 links; 22 PoP routers; 139 Access routers)
X6 probNs = 0.1, probNsf = 0.6
X7 probNr = 0.6, probNrf = 0.2
X10 0 (all users have infinite patience)
X13 Jon = 1; Joff = 1; Jx = 1 (no explicit spatiotemporal congestion)
X14 no long-lived flows
X16 initial cwnd = 2 (default Microsoft WindowsTM value)
X17 initial sst = 231/2 (arbitrary large value)
X18 M = 200 ms
X19 MI = 18,000 (x .2 M =) 3600 s
X20 prON = 0.25, prONsecond = 0.08, prONthird = 0.17

Factor-> X2 X3 X4 X5 X7 X9 X11 X12 X15
Condition -- -- -- -- -- -- -- -- --

1 1 800 0.5 3 0.7 5000 100 0.04/0.004/0.0004 0.7
2 1 1600 0.5 2 0.3 5000 100 0.04/0.004/0.0004 0.3
3 2 800 0.5 2 0.7 5000 100 0.02/0.002/0.0002 0.3
4 2 1600 0.5 3 0.3 5000 100 0.02/0.002/0.0002 0.7
5 1 800 1 2 0.3 5000 100 0.02/0.002/0.0002 0.7
6 1 1600 1 3 0.7 5000 100 0.02/0.002/0.0002 0.3
7 2 800 1 3 0.3 5000 100 0.04/0.004/0.0004 0.3
8 2 1600 1 2 0.7 5000 100 0.04/0.004/0.0004 0.7
9 1 800 0.5 3 0.3 7500 100 0.02/0.002/0.0002 0.3
10 1 1600 0.5 2 0.7 7500 100 0.02/0.002/0.0002 0.7
11 2 800 0.5 2 0.3 7500 100 0.04/0.004/0.0004 0.7
12 2 1600 0.5 3 0.7 7500 100 0.04/0.004/0.0004 0.3
13 1 800 1 2 0.7 7500 100 0.04/0.004/0.0004 0.3
14 1 1600 1 3 0.3 7500 100 0.04/0.004/0.0004 0.7
15 2 800 1 3 0.7 7500 100 0.02/0.002/0.0002 0.7
16 2 1600 1 2 0.3 7500 100 0.02/0.002/0.0002 0.3
17 1 800 0.5 2 0.3 5000 150 0.02/0.002/0.0002 0.3
18 1 1600 0.5 3 0.7 5000 150 0.02/0.002/0.0002 0.7
19 2 800 0.5 3 0.3 5000 150 0.04/0.004/0.0004 0.7
20 2 1600 0.5 2 0.7 5000 150 0.04/0.004/0.0004 0.3
21 1 800 1 3 0.7 5000 150 0.04/0.004/0.0004 0.3
22 1 1600 1 2 0.3 5000 150 0.04/0.004/0.0004 0.7
23 2 800 1 2 0.7 5000 150 0.02/0.002/0.0002 0.7
24 2 1600 1 3 0.3 5000 150 0.02/0.002/0.0002 0.3
25 1 800 0.5 2 0.7 7500 150 0.04/0.004/0.0004 0.7
26 1 1600 0.5 3 0.3 7500 150 0.04/0.004/0.0004 0.3
27 2 800 0.5 3 0.7 7500 150 0.02/0.002/0.0002 0.3
28 2 1600 0.5 2 0.3 7500 150 0.02/0.002/0.0002 0.7
29 1 800 1 3 0.3 7500 150 0.02/0.002/0.0002 0.7
30 1 1600 1 2 0.7 7500 150 0.02/0.002/0.0002 0.3
31 2 800 1 2 0.3 7500 150 0.04/0.004/0.0004 0.3
32 2 1600 1 3 0.7 7500 150 0.04/0.004/0.0004 0.7

Mills, Schwartz and Yuan

Experiment #1 required 35 weeks of processor time, which we completed in only one week by running the 224 sequen-

tial simulations in parallel on 48 processors. Had we had 224 processors available, we could have completed the simulations
in just under two days (i.e., the maximum run required 44 processor hours). Similarly, experiment #2 required 131 months
(about 11 years) of processor time, which we completed in three months, again by running the 224 sequential simulations in
parallel. Full parallelization would have enabled us to complete these simulations in about 31 days (i.e., 739 hours).

To compute the event rate at which SLX processes the simulations, we need to estimate the number of events per packet.
First, since every data packet receives an acknowledgment, the number of packets must be doubled. Average source-to-
receiver path length is 9.43 hops for the Abilene topology. Using these figures, we estimate the number of events processed
in all simulation runs for experiment #1 as 1.5E+13, which divided by the number of CPU seconds used becomes about
725,359 events/second. Taking a similar approach for experiment #2 yields an estimate of 439,864 events/second, where the
cost of 64-bit processing and larger event lists causes MesoNet to run about 40% slower. These event rates can be compared
with those reported (Yaun et al. 2003) for RossNet, a parallel simulator for large networks. Simulating synthetic topologies of
4 to 32 nodes on one, two or four instruction streams, RossNet averaged 256,244 events/second. Simulating a larger network,
based on an AT&T topology, RossNet averaged 150,720 events/second. From this, we surmise that MesoNet, when imple-
mented as a sequential SLX simulation and used to run parameter configurations in parallel, can provide event rates competi-
tive with (perhaps4 superior to) approaches that execute individual network simulations using parallel processing. For exam-
ple, given 48 processors, a sequential simulator can execute 48 configurations in parallel, while a parallel simulator using 4
processors per simulation could run only 12 configurations in parallel. This implies that the parallel simulator would need a
speedup of 4 to obtain the same throughput as the sequential simulator. The RossNet results report average speedup just un-
der 1.7 (maximum 3.2) for synthetic topologies when using 4 instruction streams. For the larger topology, RossNet achieved
a speedup just under 1.3. On the other hand, if a sequential simulator has sufficient processors to simulate all configurations
in parallel, the run requiring maximum processing time will determine the simulation latency. Under similar assumptions, the
speedup achieved by a 4-processor parallel simulator would reduce the simulation latency, but at the cost of requiring four
times more processors than sequential simulations.

Table 7: Flows Completed and Data Packets Sent in Simulation Runs Reported Here
 Experiment #1 – Slow, Small Network Experiment #2 – Large, Fast Network
Statistic Flows Completed Data Packets Sent Flows Completed Data Packets Sent
Avg./Run 11,466,429 3,414,017,482 116,317,093 33,351,040,358
Min./Run 7,258,056 2,138,998,764 72,944,797 21,069,357,409
Max./Run 17,390,781 5,048,119,166 175,947,632 50,932,067,100
Total All Runs 2,568,480,122 764,739,915,978 26,055,028,851 7,470,633,040,199

Table 8: Resource Requirements for Simulation Runs Reported Here

 Experiment #1 Experiment #2
CPU hours (224 runs) 5,857.18 94,355.28
Avg. CPU hours/Run 26.15 421.23
Min. CPU hours/Run 12.58 203.04
Max. CPU hours/Run 43.97 739.04
Avg. Memory Usage (Mbytes) 196.56 2,392.41

6 RELATED WORK

Providing feasible simulation of large, fast communication networks remains an active area of research. Several researchers
(e.g., Riley et al. 2004, Yaun et al. 2003, Zeng et al. 1998) investigate the use of parallel processing to simulate TCP/IP net-
works. For example, RossNet (Yaun et al. 2003) can simulate large, fast networks with hundreds of thousands of simultane-
ous flows. Unfortunately, parallel simulation alone does not reduce the parameter space required to explore a wide range of
conditions. We demonstrate an approach to reduce the parameter search space. In addition, as discussed above, the sequential
nature of data communication inhibits the ability of parallel simulators to achieve speedup matching the number of proces-
sors employed. We describe an alternate approach using sequential simulations to explore multiple parameter configurations
in parallel, where careful scheduling of runs achieves efficient speedup. Even so, parallel simulators deserve continued re-

4 The MesoNet simulations had the advantage of executing on 3 GHz dual-core Opteron processors, while most of the Ross-
Net simulations ran on dual hyper-threaded 2.8 GHz Pentium-4 Xeon processors.

Mills, Schwartz and Yuan

search because multi-core, multichip technology promises substantial increase in the availability of cost-effective processors,
which could significantly reduce simulation latencies.

As an alternative to parallel simulators, several researchers (e.g., Towsley, Misra and Gong 2000, Yi and Shakkottai
2007) propose to model communication networks as topologies where router behavior is described approximately as fluid-
flows, using differential equations. Such models may be solved efficiently using numerical methods. While promising, fluid
approximation currently exhibits two main shortcomings: (1) inaccuracy (Geurts, Khayat and Leduc 2006) arising from an
inability to satisfactorily describe packet loss processes (Genin and Marbukh 2009) and (2) limited dynamics, capturing only
steady-state behaviors averaged over long time intervals (Lee et al. 2007). Genin and Marbukh (2009) suggest one means to
address these limitations. As another alternative to parallel simulators, Lee and colleagues (2007) propose a hybrid modeling
framework that continuously approximates discrete variables by averaging over short intervals of time. Constraining the av-
eraging interval allows generation of significant events, such as packet drops and related adjustments in congestion windows.
The approach yields accurate results that can be produced with only about 20% of the processing resources required by se-
quential discrete-event simulators. Further work remains to extend Lee’s hybrid model to have all the features necessary to
conduct experiments such as those we describe in Sec. 4. Both fluid approximations and hybrid discrete/continuous-time
models appear to be promising alternatives to parallel simulators. Regardless of the underlying modeling approach adopted,
the parameter and experiment reduction techniques we describe in this paper should enable researchers to produce models
that are easier to understand, parameterize and investigate.

7 CONCLUSIONS AND FUTURE WORK

We defined a concise TCP/IP network model that can be configured using only 20 parameters. Further, we showed how the
model can be combined with two-level orthogonal fractional factorial techniques to design efficient experiments to investi-
gate behavior under a wide range of conditions. Using SLX, we implemented the model as a sequential process capable of
simulating large (hundreds of thousands of simultaneously active flows), fast (hundreds of Gigabits/second) networks under a
variety of congestion control algorithms. We demonstrated how to carefully explore a parameter space using parallel in-
stances of a sequential simulator. We discussed resource requirements for the model and related performance properties of
SLX. We found our approach competitive in throughput with a parallel simulator, but showed that parallel simulators should
achieve superior simulation latency at the cost of extra processors. Future work remains to generalize our ideas in two direc-
tions. First, we need to demonstrate that the approach can be applied to other large distributed systems, such as computation
clouds or grids. Second, we need to establish that the approach can produce parallel simulators, fluid approximations and hy-
brid models that are easier to understand, parameterize and investigate.

ACKNOWLEDGMENTS

The work reported in this paper was funded under the Complex Systems Program within the Information Technology La-
boratory at the National Institute for Standards and Technology.

REFERENCES

Ammar, M. 2005. Why we still don’t know how to simulate networks. In Proceedings of the 38th Simulation Symposium, 3.
Appenzeller G., I. Keslassy and N. McKeown. 2004. Sizing Router Buffers. In Proceedings of ACM SIGCOMM, 34:4, 281-

292.
Box, G., Hunter, J. and Hunter, W. 2005. Statistics for Experimenters. 2nd ed. Hoboken, New Jersey: Wiley.
Bush R. and D. Meyer. 2003. Some Internet Architectural Guidelines and Philosophy. RFC 3439.
Crovella M., M. Taqqu and A Bestavros. 1998. Heavy-tailed probability distributions in the World Wide Web. Chapter 1 in A

Practical Guide to Heavy Tails, Chapman & Hall, 3-26.
Fall, K. and K. Varadhan, eds. 2009. The ns Manual. Available via <http://www.isi.edu/nsnam/ns/doc/

ns_doc.pdf> [accessed December 2, 2009].
Henriksen, J.O. 2000. SLX: the X is for extensibility. In Proceedings of the 32nd Winter Simulation Conference,183-190.
Genin, D. and V. Marbukh. 2009. Bursty fluid approximation of TCP for modeling Internet congestion at the flow level. In

Proceedings of the 47th Annual Allerton Conference on Communication, Control and Computing, Paper ThD4.3.
Geurts, P., I. El Khayat and G. Leduc. 2006 On the accuracy of analytical models of TCP throughput. volume 3976 Springer.
Lee, J., S. Bohacek, J. Hespanha and K. Obraczka. 2007. Modeling Communication Networks with Hybrid Systems. In

IEEE/ACM Transactions on Networking, 15:3, 630-643.

Mills, Schwartz and Yuan

Leith, D., L. Andrew, T. Quetchenbach, R. Shorten and K. Lavi. 2008. Experimental Evaluation of Delay/Loss-based TCP
Congestion Control Algorithms. In Proceedings of the 6th International Workshop on Protocols for Fast Long-Distance
Networks, 6 pages.

Li, Y.-T., D. Leith and R. Shorten. 2007. Experimental Evaluation of TCP Protocols for High-Speed Networks. In
IEEE/ACM Transactions on Networking, 15:5, 1109-1122.

Mills, K., J. Filliben, D. Cho, E. Schwartz and D. Genin. 2010. Study of Proposed Internet Congestion-Control Mechanisms.
NIST Special Publication 500-TBD.

Paxson, V. and S. Floyd. 1997. Why we don’t know how to simulate the Internet. In Proceedings of the 1997 Winter Simula-
tion Conference, ed. S. Andradottir, K. J. Healy, D. H. Withers, and B. L. Nelson, 1037-1044.

Riley, G., M. Ammar, F. Fujimoto, A. Park, K. Perumalla and D. Xu. 2004. A Federated Approach to Distributed Network
Simulation. In ACM Transactions on Modeling and Computer Simulation, 14:2, 116-148.

SSFNet. 2009. How to use SSFNet. Available via <http://www.ssfnet.org/internetPage.html> [accessed
December 2, 2009]

Towsley, D., V. Misra and W. Gong. 2000. Fluid-based analysis of a network of AQM routers supporting TCP flows with an
application to RED. In Proceedings of SIGCOMM, 30:4, 151,160.

Tyan, H-Y., A. Sobeih and J. Hou. 2009. Design, Realization and Evaluation of a Component-based, Compositional Network
Simulation Environment. In Simulation, 85:3, 159-181.

Yaun, G., D. Bauer, H. Bhutada, C. Carothers, M. Yukel and S. Kalyanaraman. 2003. Large-Scale Network Simulation
Techniques: Examples of TCP and OSFP Models. In SIGCOM Computer Communications Review, 33:3, 27-41.

Yi, Y. and S. Shakkottai. 2007. FluNet: A hybrid internet simulator for fast queue regimes, In Computer Networks: The In-
ternational Journal of Computer and Telecommunications Networking, 51:18, 4919-4937.

Zeng. X., R. Bagrodia and M. Gerla. 1998. GloMoSim: a Library for Parallel Simulation of Large-scale Wireless Networks.
In Proceedings of the 12th Workshop on Parallel and Distributed Simulations, 154-161.

AUTHOR BIOGRAPHIES

KEVIN L. MILLS is a Senior Research Scientist at the U.S. National Institute of Standards and Technology (NIST). He re-
ceived his Ph.D. in information technology from George Mason University (GMU). From 1996 to 2006 he served on the ad-
junct faculty of the department of computer science at GMU. From 1996 to 1999 he was a program manager at the Defense
Advanced Research Projects Agency (DARPA). His research interests include complex distributed systems. His email is
<kmills@nist.gov>.

EDWARD J. SCHWARTZ is a Ph.D. student in the department of electrical and computer engineering at Carnegie Mellon
University. He contributed to this work at NIST as a summer university research fellow of the National Science Foundation.
His B.S. in computer science is from Millersville University in 2007. His research interests include cyber security. His email
is <edmcman@gmail.com>.

JIAN YUAN is an Associate Professor in the department of electronic engineering at Tsinghua University. He received his
Ph.D. in communication and electronic systems from the University of Electronic Science and Technology of China. Former-
ly, he contributed to this work at NIST as a guest scientist between 2000 and 2004. His research interests include complex
distributed systems. His email address is <jyuan@tsinghua.edu.cn>.

