
Contact: Erik Andersen

Denmark

Tel: +45 20971490

Email: era@x500.eu
Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the

Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related

work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T.

INTERNATIONAL TELECOMMUNICATION UNION COM 17 – C xx – E

TELECOMMUNICATION

STANDARDIZATION SECTOR

STUDY PERIOD 2013-2016

September 2014

English only

Original: English

Question(s): 11/17

STUDY GROUP 17 – CONTRIBUTION xx

Source: Denmark

Title: Proposal for including whitelist support in Rec. ITU-T X.509 | ISO/IEC 9594-8.

Justification

In some environment, such as smart grid, some entities only communicates with a limited set of other entities. Such

environments are often constraint with respect to storage capacity, processing speed and bandwidth. Efficient public-

key certificate handling is then essential. It is therefore proposed to include a whitelisting capability in Rec. ITU-T

X.509 | ISO/IEC 9594-8 with capabilities for efficient and speedy public-key certificate validation.

IEC TC57 WG15 has identified a requirement for whitelisting in their work on IEC 62351-9, Key Management.

Whitelists are only relevant for end entities, i.e., entities to which end-entity public-key certificates have been issues.

An end entity cannot issue public-key certificates to other entities.

Figure A – Certificate management

Figure A illustrates the basics of the proposed approach. End entity 1 (EE1) has communications requirements with end

entities EE2, EE3, EE4 and EEa. A trusted external entity, a delegator, maintains information about the public-key

certificate status for one or more end entities. This is illustrated in Figure A, where the delegator maintains public-key

certificate information about EE1 and its potential communication partners including what is necessary for the delegator

to maintain status information and perform validation on behalf of EE1. This includes maintaining certification path

status information.

The issue for communication with EEa is a little more complicated, as it belongs to a PKI domain different from that of

EE1. There are two options for the situation shown in Figure A:

a) The delegator, in addition to holding trust anchor information for trust anchor 1, also holds trust anchor

information about trust anchor 2 and information about relevant CAs subordinate to trust anchor 2, i.e., it

holds information about CAb in figure A.

CA1

EE1 EE2

CA2

EE3 EE4

CAa

EEa

CAb

Delegator

End entity 2

End entity 3

End entity 4

End entity a

Signature

Whitelist

End entity 1
Public-key certificate

for end entity 1

Private key

for end entity 1

Trust anchor information

(Delegator)

Either - or

Trust anchor 1 Trust anchor 2

- 2 -

COM 17 – C xx – E

b) The CA2 and CAa have established cross certification meaning that it is possible to establish a

certification path from trust anchor 1 to any entity subordinate to CAa.

The certification paths the delegator has to maintain on behalf of EE1 are as follows:

The certification path for PDUs received from EE2 is quite simple as EE1 and EE2 share the same issuing CA:

CA1 >> EE2 (the trust anchor is not part of the certification path).

The certification path for PDUs received from EE3 or EE4 is similarly quite simple as they share the same trust anchor:

CA2 >> EE3 and CA2 >> EE4.

The certification path for PDUs received from EEa is a little more complicated. Two cases are considered. The first case

is where the EE1 has trust anchor information from trust anchor 2:

CAa >> EEa

If, at the other hand, EE1 has no trust anchor information from trust anchor 2, but there is cross certification

between CA2 and CAa, then the certification path is:

CA2 >> CAa >> EEa

If an incident happens that invalidates a certification path, EE1 has to be informed about the change in the status.

Based on the information the delegator holds, it constructs a whitelist to be forwarded to EE1. This whitelist contains

sufficient information to allow EE1 to validate requests/responses from other end entities without having to consult a

third party.

The delegator maintains the whitelist at EE1 by either a replace request or an update request. In particular, the EE1 must

be kept updated on any change in the status information. It is proposed that the delegator maintains status information

by some kind of subscription service.

The communications between EE1 and the delegator need to be secure, i.e., it is necessary to ensure integrity,

confidentiality and authentication. It is proposed to use Cryptographic Message Syntax (CMS) for enveloping the

communications.

The validation is most efficiently performed if the delegator acts a trust anchor for EE1 (see discussion in DR_394).

A delegator may acts as delegator for multiple end entities.

As mentioned before, the EE1 holds a whitelist signed by the delegator. I addition, it holds its own public-key

certificate and its private key. In this simple example, it also holds delegator trust anchor information.

Figure B – Delegator communications partners

Figure B illustrates the communication partners with which the delegator is communicating. It provides status update

information to supporting end entities and it receives status information from CAs responsible public-key certificates

that affects the certifications paths for the supporting end entities.

CA CA

Delegator

End entity

Configure

Status Status

Status

http://www.x500standard.com/uploads/Ig/DR_394.pdf

- 3 -

COM 17 – C xx – E

Figure C – Whitelist management

Figure C illustrates the different type of communications between the delegator and the end entity, for which the

delegator maintains a whitelist.

Figure D – Delegator management

Figure D illustrates the different type of communications between the delegator and one of the CAs from which it can

subscribe on public-key certificate status information.

Delegator End entity

Add

Replace

Update

Delete

Rsp

Rsp

Rsp

Rsp

Delegator CA

Subscribe cert

status (cert list)
Rsp

Rsp

Updates

Rsp

Replace

Unsubscribe cert

Rsp

- 4 -

COM 17 – C xx – E

Proposal for addition to Rec. ITU-T X.501 | ISO/IEC 9594-2

Add new object identifiers to the UsefulDefinitions module to allow for CMS support within Rec. ITU-T X.509 |

ISO/IEC 9594-8:

Add the following new attribute type for allocation of object identifiers for CMS content types:

cmsContentType ID ::= {ds 41}

Add a new object identifier for CMS a module holding CMS content specifications

cmsContentSpecifications ID ::= {module cmsContentSpecifications(40) 8}

Add a new synonym:

id-cmsct ID ::= cmsContentType

- 5 -

COM 17 – C xx – E

Proposal for addition to Rec. ITU-T X.509 | ISO/IEC 9594-8

Add the following abbreviation to clause 4:

CASP Certification Authority Subscription Protocol

WLMP WhiteList Management Protocol

Add a new clause 11 and renumber subsequent clauses:

11 Public-key certificate whitelisting

11.1 Whitelist concept

In some environments, end entities may only communicate with a few other end entities and will not accept PDUs from

any other entity. Validation may be optimized in such environment by use of whitelists. A whitelist is a list providing

information about potential communications partners for a particular end entity. If a PDU is received from an entity not

represented in the whitelist, the PDU shall be discarded. The whitelist is created, maintained and signed by an entity

called the delegator, which is an entity to which an end entity has delegated part of the maintenance and validation

tasks. For efficiency, the delegator could be a trust anchor for the end entity.

Two scenarios are recognized here:

a) A whitelist is placed in an end entity with no or minor constraints allowing the end entity to perform

much of the validation on its own. In this case, the whitelist is mainly used to restrict the

communications to selected entities.

b) A whitelist is placed in an entity that is constraints with respect to processing power, storage and/or

response time to a degree that it cannot afford to go to a third party when doing validation, meaning that

the end entity locally needs to have sufficient updated information available to do the validation.

11.2 The delegator

The behaviour of the delegator is dependent on whether it maintains whitelists for end entities in a non-constrained

environment or for end entities in a constrained environment.

If the whitelist is to be placed in a non-constraint end entity, the whitelist shall only contain rather stable information

not affected by state or change of associated public-key certificates.

If the whitelist is to be placed in a constraint end entity, the delegator shall maintain a complete certification paths

required for each of the peer entities with which the end entity communicates. The delegator shall continuously ensure

that the certifications paths can validate positively. This included checking for restrictions and expired or revoked

public-key certificates. When a certification path cannot longer validate positively, the corresponding whitelist item

shall be updated within the affected end entity.

11.3 Whitelist syntax

The CertWhitelist ASN.1 data type specifies a whitelist.

CertWhitelist ::= SIGNED {TBSCertWhitelist}

TBSCertWhitelist ::= SEQUENCE {

 version Version DEFAULT v1,

 signature AlgorithmIdentifier {{SupportedAlgorithms}},

 constraint BOOLEAN DEFAULT TRUE,

 issuerKeyIdentifier WLIssuerKeyIdentifier,

 certInfo SEQUENCE OF SEQUENCE {

 serialNumber CertificateSerialNumber OPTIONAL,

 issuer Name,

 subject Name,

- 6 -

COM 17 – C xx – E

 subjectPublicKeyInfo SubjectPublicKeyInfo OPTIONAL,

 certStatus CertStatus OPTIONAL,

 subjectKeyIdentifier WLSubjectKeyIdentifier OPTIONAL,

 ...,

 ...,

 wlEntryExtensions [1] Extensions OPTIONAL },

 ...,

 ...,

 wlExtensions Extensions OPTIONAL }

WLIssuerKeyIdentifier ::= OCTET STRING

WLSubjectKeyIdentifier ::= OCTET STRING

CertStatus ::= ENUMERATED {

 good (0),

 revoked (1),

 on-hold (2),

 expired (3),

 ... }

The whitelist components are specified in the following.

The version component shall hold the version of the whitelist. This component shall either be absent or have the value

v1.

The signature component shall contain the algorithm identifier for the signature algorithm used by the delegator

when signing the whitelist. This component shall be the same value as used in the algorithmIdentifier component

of the SIGNATURE data type when signing the whitelist.

NOTE – By including this component, the signature algorithm is protected by the signature on the whitelist.

The constraint component shall take the value FALSE if the end entity in not resource constraint and therefore has

the resources to perform normal validation, e.g., to make use of the OCSP service. Otherwise, this component shall take

the value TRUE or be absent.

The issuerKeyIdentifier component shall be a unique identification of the public key of the delegator. The value

shall be a SHA256 hash of the public key. ??

 The certInfo component shall identify each of the end-entity public-key certificates represented by the whitelist:

a) The serialNumber component shall be identical to the serialNumber component of the end-entity

public-key certificate represented by this element.

b) The issuer component shall be identical to the issuer component of the end-entity public-key

certificate represented by this element.

c) The subject component shall be identical to the subject component of the end-entity public-key

certificate represented by this element.

d) The subjectPublicKeyInfo component shall be present when the constraint component has the

value TRUE. Otherwise, it shall be absent. When present, this component shall be identical the

subjectPublicKeyInfo component of the end-entity public-key certificate represented by this

element.

e) The certStatus component shall be absent if the constraint component has the value FALSE.

Otherwise, it shall be present and shall then hold the status of the public-key certificate represented by

this element:

– The enumerated item good signals that the represented public-key certificate can be trusted.

– The enumerated item revoked signals that the represented public-key certificate has been revoke

and cannot longer be trusted.

– The enumerated item on-hold signals that the represented public-key certificate has been put on

hold status and should not be trusted for the time being.

– The enumerated item expired signals that the represented public-key certificate has expired and

cannot be trusted.

- 7 -

COM 17 – C xx – E

f) The subjectKeyIdentifier component shall be present when the constraint component has the

value TRUE. Otherwise, this component shall be absent. When present, it shall hold a unique

identification of the public key within end-entity public-key certificate represented by this element. The

value shall be a SHA256 hash of the public key. ??

g) The wlEntryExtensions component, if present, shall contain one or more whitelist entry extensions.

The wlExtensions component, if present, shall contain one or more whitelist extensions.

- 8 -

COM 17 – C xx – E

Add a new SECTION 4.

SECTION 4 – COMMUNICATIONS CAPABILITIES

20 Use of cryptographic message syntax (CMS)

Cryptographic message syntax (CMS) is defined in Rec. ITU-T X.CMS. It defines communication capabilities that

allow for data integrity, confidentiality and authentication. CMS may be used for maintaining PKI and PMI related

information.

The CMS defines different content types to be used for different purposes.

CONTENT-TYPE ::= TYPE-IDENTIFIER

The CONTENT-TYPE information object class is equivalent to the TYPE-IDENTIFIER information object class, which is

an ASN.1 built-in information object class. The CONTENT-TYPE information object is used to bind the content type to

the abstract syntax of the content.

This Specification defines specific content types to be enveloped by the signed content type, the signed and encrypted

content type or to be transmitted as non-enveloped data.

21 Whitelist management and certification authority subscription protocols

The whitelist management protocol (WLMP) is used between a delegator and an end entity for the management of a

whitelist. The CA subscription protocol (CASP) is used between a delegator and a CA to which the delegator subscribes

to public-key certificate status.

21.1 Use of cryptographic message syntax signedData content type

The ct-signedData content type is defined in Rec. ITU-T X.CMS. This Specification puts some restriction on its use.

This is formally specified by the use of an equivalent wlSignedData content type identified by the same object

identifier as the ct-signedData content type. An implementation of the wlSignedData content type is conformant

with the ct-signedData content type.

The whitelist signed data content is defined as:

wlSignedData CONTENT-TYPE ::= {

 WLSignedData

 IDENTIFIED BY id-signedData }

WLSignedData ::= SEQUENCE {

 version CMSVersion (v3),

 digestAlgorithms SET (SIZE (1)) OF AlgorithmIdentifier {{WL-Hash-Algorithms}},

 encapContentInfo EncapsulatedContentInfo,

 certificates [0] IMPLICIT SET (SIZE (1..MAX)) OF Certificate OPTIONAL,

--crls [1] IMPLICIT RevocationInfoChoices OPTIONAL,

 signerInfos SignerInfos,

 ... }

EncapsulatedContentInfo ::= SEQUENCE {

 eContentType CONTENT-TYPE.&id({WLContentSet}),

 eContent [0] EXPLICIT OCTET STRING

 (CONTAINING CONTENT-TYPE.&Type({WLContentSet}{@eContentType}))}

SignerInfos ::= SET (SIZE (1)) OF SignerInfo

SignerInfo ::= SEQUENCE {

 version CMSVersion,

 sid SignerIdentifier,

 digestAlgorithm AlgorithmIdentifier {{WL-Hash-Algorithms}},

 signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,

- 9 -

COM 17 – C xx – E

 signatureAlgorithm AlgorithmIdentifier {{WL-Signature-Algorithms}},

 signature SignatureValue,

 unsignedAttrs [1] IMPLICIT Attributes{{UnsignedAttributes}} OPTIONAL }

SignerIdentifier ::= CHOICE {

--issuerAndSerialNumber IssuerAndSerialNumber,

subjectKeyIdentifier [0] SubjectKeyIdentifier,

--certHash [1] CertHash,

...}

WL-Hash-Algorithms ALGORITHM ::= {...}

WL-Signature-Algorithms ALGORITHM ::= {...}

The WLSignedData data type has the components specified in the following.

The version parameter shall take the value v3.

The digestAlgorithms component shall consist of a single element specifying the set of applicable hashing

algorithms.

The encapContentInfo component shall specify the set of content types applicable for the whitelist support.

The certificates component, when present, shall specify the set of public-key certificates that makes up the

certification path to be used for signature verification.

The crls component shall be absent.

The signerInfos shall consists of a single element with the following components:

a) The version component shall take the value v3. ??

b) The sid component shall take the subjectKeyIdentifier alternative.

c) The digestAlgorithm component shall be a hash algorithm of the repertoire specified by the WL-

Hash-Algorithms set.

d) The signedAttrs component ??

e) The signatureAlgorithm component shall be a signature algorithm of the repertoire specified by the

WL-Signature-Algorithms set.

f) The signature component

g) The unsignedAttrs component ??

21.2 Use of cryptographic message syntax signcryptedData content type

To be completed when Rec. ITU-T X.CMS has been further developed.

21.3 Content types specific for whitelist support

The following CMS content types are defined for the WLMP and the CASP:

WLContentSet CONTENT-TYPE ::= {

 addWhitelistReq |

 addWhitelistRsp |

 replaceWhitelistReq |

 replaceWhitelistRsp |

 updateWhitelistReq |

 updateWhitelistRsp |

 deleteWhitelistReq |

 deleteWhitelistReq |

 rejectWhitelist |

 certSubscribeReq |

 certSubscribeRsp |

 certUnsubscribeReq |

 certUnsubscribeRsp |

 certReplaceReq |

- 10 -

COM 17 – C xx – E

 certReplaceRsp |

 certUpdateReq |

 certUpdateRsp |

 rejectCAsubscribe,

 ... }

21.4 Checking of received content

When a message is received, the recipient shall perform a number of validation steps. If the validation fails at any step,

no further validation is necessary and the recipient returns an appropriate error code. Error codes for the WLMP are

specifies in clauses 21.5.8 and 21.6.8.

A number of checks are common across different content types. Such common checks are specified in the following.

The receiver of a content shall check:

a) whether the content type is a supported one and if not, return an unknownContentType error code;

b) whether the version parameter of the content is supported and if not, return an

unsupportedWLMPversion or unsupportedCASPversion error code, as appropriate;

c) whether the content is present and if not, return a missingContent error code;

d) whether all mandatory content parameters are present and if not, return a missingContentParameter

error code;

e) whether unexpected parameters are included in the content and if so, return an

invalidContentParameter error code;

f) whether the sequence component hold a valid sequence number and if not, return a sequenceError

error code as specified in clause 21.5.8 for the WLMP and in clause 21.6.8 for CASP.

21.5 Whitelist management protocol

21.5.1 Whitelist management introduction

The whitelist management is concerned with how the delegator maintains whitelist information within the end entities

it supports. It encompasses a set of CMS exchanges as detailed in the following.

21.5.2 Whitelist common parameters

Some components are common across different content types. The WLMPcommonParms data type comprises these

parameters.

WLMPcommonParms ::= SEQUENCE {

 version WLMPversion DEFAULT v1,

 sequence WLMPsequence,

 ... }

WLMPversion ::= ENUMERATED { v1(1), v2(2), v3(3), ... }

WLMPsequence ::= INTEGER (1..MAX)

The WLMPcommonParms data type has the following parameters.

The version parameter shall hold the version of the WLMP. The current version is version v1.

The sequence parameter shall hold a sequence number of a message being sent. The sequence number is used for:

a) to allow detection replay of messages cause by an error or to pair caused by a hostile attacker;

b) to pair requests and responses;

c) to detect missing messages.

Editor's note – Maybe we need more here, time stamp, nonce, etc.

21.5.3 Add whitelist

addWhitelistReq CONTENT-TYPE ::= {

- 11 -

COM 17 – C xx – E

 AddWhitelistReq

 IDENTIFIED BY id-addWhitelistReq }

The delegator uses the addWhitelistReq content type to initiate the addition of a whitelist to an end entity.

AddWhitelistReq ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 certlist CertWhitelist,

 ... }

The AddWhitelistReq data type specifies the actual and has the following components:

a) The WLMPcommonParts data type is specified in clause 21.5.2. The sequence parameter shall take the

value 1.

b) The certList component shall hold the whitelist to be added to the end entity.

The end entity shall check the validity of the request by checking:

a) as specified in clause 21.4;

b) checking the validity of the signature on the received whitelist and if invalid, return an

invalidSignature error code;

c) whether a whitelist with the same WhitelistIdentifier value already exists and if so, return a

duplicateWL error code;

d) whether all whitelist mandatory parameters are present and if not, return a missingWLparameter error

code;

e) whether the version parameter on the whitelist specifies a supported version and if not, return a

invalidWLversion error code;

f) whether the constraint parameter on the received whitelist indicates a supported constraint mode and

if not, return a constraintError error code;

g) whether the certStatus component specifies an unknown status code and if so, return a

unknownCertStatus error code;

h) whether the whitelist contains an unsupported critical extension and if so, return an

unsupportedCriticalExtenssion error code;

i) checking whether the maximum number of whitelists has been exceeded by the new whitelist and if so,

return a maxWLsExcited error code.

NOTE – Maximum limit might be just a single whitelist.

addWhitelistRsp CONTENT-TYPE ::= {

 AddWhitelistRsp

 IDENTIFIED BY id-addWhitelistRsp }

The end entity uses the addWhitelistRsp content type to report the outcome of an add whitelist request.

AddWhitelistRsp ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 result CHOICE {

 success [0] AddWhitelistOK,

 failure [1] AddWhitelistErr,

 ... },

 ... }

AddWhitelistOK ::= SEQUENCE {

 ok NULL,

 ... }

AddWhitelistErr ::= SEQUENCE {

 notOK WLMP-error,

 ... }

The AddWhitelistRsp data type specifies the actual content and has the following components:

The WLMPcommonParms data type is specified in clause 21.5.2.

- 12 -

COM 17 – C xx – E

The result parameter has the following alternatives:

a) The success alternative shall be taken if the addition of a whitelist was performed successfully.

b) The failure alternative shall be taken if the addition of a whitelist failed. The WLMP-error data type is

specified in clause 21.5.8.

21.5.4 Replace whitelist

replaceWhitelistReq CONTENT-TYPE ::= {

 ReplaceWhitelistReq

 IDENTIFIED BY id-replaceWhitelistReq }

The delegator uses the replaceWhitelistReq content type to initiate the replacement of a whitelist at an end entity.

It shall be used when one or more public-key certificates represented by the whitelist has been replaced or when

delegator key information has changes.

ReplaceWhitelistReq ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 old WhitelistIdentifier,

 new CertWhitelist,

 ... }

WhitelistIdentifier ::= ENCRYPTED-HASH {TBSCertWhitelist}

The ReplaceWhitelistReq data type specifies the actual content and has the following components:

a) the components of WLMPcommonParms data type as specified in clause 21.5.2;

b) the old component shall hold the identification of the old whitelist in the form of the signature on that

list; and

c) the new component shall hold the replacement whitelist.

The end entity shall verify the validity of the request by checking:

a) as specified in 21.5.3 items a) to h);

b) whether the WhitelistIdentifier value specified in the old component matches the identity of a

local whitelist and if not, return an unknownWL error code.

replaceWhitelistRsp CONTENT-TYPE ::= {

 ReplaceWhitelistRsp

 IDENTIFIED BY id-replaceWhitelistRsp }

The end entity uses the replaceWhitelistRsp content type to report the outcome of a replace whitelist request.

ReplaceWhitelistRsp ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 result CHOICE {

 success [0] RepWhitelistOK,

 failure [1] RepWhitelistErr,

 ... },

 ... }

RepWhitelistOK ::= SEQUENCE {

 ok NULL,

 ... }

RepWhitelistErr ::= SEQUENCE {

 notOK WLMP-error,

 ... }

The ReplaceWhitelistRsp data type specifies the actual content and has the following components:

The WLMPcommonParms data type is specified in clause 21.5.2.

The result parameter has the following alternatives:

a) The success alternative shall be taken if the replacement of a whitelist was performed successfully.

- 13 -

COM 17 – C xx – E

b) The failure alternative shall be taken if the replacement of a whitelist failed. The WLMP-error data

type is specified in clause 21.5.8.

21.5.5 Update whitelist

updateWhitelistReq CONTENT-TYPE ::= {

 UpdateWhitelistReq

 IDENTIFIED BY id-updateWhitelistReq }

The delegator uses the updateWhitelistReq content type to initiate updates of a whitelist at an end entity. This

request content type is only relevant if the whitelist in question has the constraint component set to TRUE. It shall be

used when the status of one or more public-key certificates represented by the whitelist has changed.

UpdateWhitelistReq ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 wl-Id WhitelistIdentifier,

 status SEQUENCE (SIZE (1..MAX)) OF WhitelistStatus,

 signature WLsignature,

 ... }

WhitelistStatus ::= SEQUENCE {

 subjectId WLSubjectKeyIdentifier,

 update CertStatus,

 ... }

WLsignature ::= ENCRYPTED-HASH {TBSCertWhitelist}

The UpdateWhiteListReq data type specifies the actual content and has the following components:

a) The components of WLMPcommonParms data type as specified in clause 21.5.2.

b) The wl-Id component shall identify the whitelist to be updated.

c) The status component shall hold a list of status changes and each element has he following

subcomponents:

– The subjectId subcomponent shall identify the particular public-key certificate for which the

status has changed.

– The update subcomponent shall hold the updated status of the public-key certificate.

d) The signature component shall hold an updated signature of the whitelist reflecting the whitelist after

it has been updated.

The end entity shall verify the validity of the request by checking

a) whether the content type is relevant for the end-entity and if not, return a notRelevantContent error

code;

b) as specified in clause 21.4;

c) whether the WhitelistIdentifier value specified in the wl-Id component matches the identity of a

local whitelist and if not, return an unknownWL error code;

d) each element of the status component as to

– whether the subjectId subcomponent matches the identity of public-key certificate represented by

the identified whitelist and if not, return a unknownCert error code;

– whether the update subcomponent specifies an unknown status code and if so, return a

unknownCertStatus error code;

e) whether the signature component is valid for the updated whitelist and if not, return an

invalidSignature error code.

updateWhitelistRsp CONTENT-TYPE ::= {

 UpdateWhitelistRsp

 IDENTIFIED BY id-updateWhitelistRsp }

The end entity uses the updateWhitelistRsp content type to report the outcome of an update request.

- 14 -

COM 17 – C xx – E

UpdateWhitelistRsp ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 result CHOICE {

 success [0] UpdWhitelistOK,

 failure [1] UpdWhitelistErr,

 ... },

 ... }

UpdWhitelistOK ::= SEQUENCE {

 ok NULL,

 ... }

UpdWhitelistErr ::= SEQUENCE {

 notOK WLMP-error,

 ... }

The UpdateWhitelistRsp data type specifies the actual content and has the following components:

The WLMPcommonParms data type is specified in clause 21.5.2.

The result parameter has the following alternatives:

a) The success alternative shall be taken if the update of a whitelist was performed successfully.

b) The failure alternative shall be taken if the update of a whitelist failed. The WLMP-error data type is

specified in clause 21.5.8.

21.5.6 Delete whitelist

deleteWhitelistReq CONTENT-TYPE ::= {

 DeleteWhitelistReq

 IDENTIFIED BY id-deleteWhitelistReq }

The delegator uses the deleteWhitelistReq content type to initiate deletion of a whitelist at an end entity.

DeleteWhitelistReq ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 wl-Id WLIssuerKeyIdentifier,

 ... }

The DeleteWhitelistReq data type specifies the actual content and has the following component:

a) The components of WLMPcommonParms data type as specified in clause 21.5.2.

b) The wl-Id component shall identify the whitelist to be deleted.

The end entity shall verify the validity of the request by checking

a) as specified in clause 21.4;

b) whether the WhitelistIdentifier value specified in the wl-Id component matches the identity of a

local whitelist and if not, return an unknownWL error code.

deleteWhitelistRsp CONTENT-TYPE ::= {

 DeleteWhitelistRsp

 IDENTIFIED BY id-deleteWhitelistRsp }

The end entity uses the deleteWhitelistRsp content type to report the outcome of a delete request.

DeleteWhitelistRsp ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 result CHOICE {

 success [0] DelWhitelistOK,

 failure [1] DelWhitelistErr,

 ... },

 ... }

DelWhitelistOK ::= SEQUENCE {

 ok NULL,

 ... }

- 15 -

COM 17 – C xx – E

DelWhitelistErr ::= SEQUENCE {

 notOK WLMP-error,

 ... }

The DeleteWhitelistRsp data type specifies the actual content. It has the following components:

The WLMPcommonParms data type is specified in clause 21.5.2.

The result parameter has the following alternatives:

a) The success alternative shall be taken if the deletion of a whitelist was performed successfully.

b) The failure alternative shall be taken if the deletion of a whitelist failed. The WLMP-error data type is

specified in clause 21.5.8.

21.5.7 Whitelist reject

rejectWhitelist ::= CONTENT-TYPE ::= {

 RejectWhitelist

 IDENTIFIED BY id-rejectWhitelist }

The rejectWhitelist content type is used by the delegator to report problems with a response from the end entity.

RejectWhitelist ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 reason WLMP-error,

 ... }

The RejectWhitelist data type specifies the actual content and has the following component:

The sequence parameter of the WLMPcommonParms data type shall take the same value as in the response on which it

is reporting.

The WLMP-error is specified in clause 21.5.8.

The delegator shall verify the validity of a received response by checking

a) as specified in clause 21.4.

21.5.8 Whitelist error codes

A value of the WLMP-error data type is used by the end entity to report an error when processing a request from the

delegator. It is also used by a delegator to reject a faulty response from an end entity.

WLMP-error ::= ENUMERATED {

 noReason (0),

 unknownContentType (1),

 unsupportedWLMPversion (2),

 missingContent (3),

 missingContentParameter (4),

 invalidContentParameter (5),

 sequenceError (6),

 notRelevantContent (7).

 invalidSignature (8),

 duplicateWL (9),

 missingWLparameter (10),

 invalidWLversion (11),

 constraintError (12),

 unknownCertStatus (13),

 unsupportedCriticalExtenssion (14),

 maxWLsExceeded (15),

 unknownCert (16),

 unknownWL (17),

 ... }

a) the noReason value shall be selected when no other error code is applicable;

b) the unknownContentType value shall be selected if the content type is not known by the receiver;

- 16 -

COM 17 – C xx – E

c) the unsupportedWLMPversion value shall be selected if a request or response content specified a

WLMP version not supported;

d) the unsupportedContentVersion value shall be selected when a request or response includes an

unsupported content type;

e) the missingContent value shall be selected when the request or response did not include a content;

f) the missingContentParameter value shall be selected when a request or response does not includes a

mandatory parameter;

g) the invalidContentParameter value shall be selected when an unexpected parameter was included in a

request or response;

h) the sequenceError value shall be selected by when:

– an end entity receives a request content of the addWhitelistReq content type that did not have the

sequence parameter set to 1;

– an end entity receives a request content not of the addWhitelist content type that did not have the

sequence parameter set to one more than for the previous request; or

– a delegator receives a response content with a sequence component value different from the one in

the corresponding request content;

i) the notRelevantContent value shall be selected if a content type is not relevant for a non-constraint

end entity;

j) the invalidSignature value shall be selected when a signature on a whitelist is invalid;

k) the duplicateWL value shall be selected when delegator attempts to add en already existing whitelist to

an end entity;

l) the missingWLparameter value shall be selected when a received whitelist is missing a mandatory

component;

m) the invalidWLversion value shall be selected when an unsupported whitelist version is received;

n) the constraintError value shall be selected when a received whitelist has an invalid constraint

parameter;

o) the unknownCertStatus value shall be selected when a received whitelist or a whitelist update that

contained an unknown public-key certificate status;

p) the unsupportedCriticalExtenssion value shall be selected when a reived whitelist contains an

unsupported critical extension;

q) the maxWLsExceeded value shall be selected when the addition of a whitelist would bring the number of

whitelist beyond a locally determined value;

r) the unknownCert value shall be selected when an unknown public-key certificate was referenced in an

update request;

s) the unknownWL value shall be selected when an end entity receives a content including a value of the

WhitelistIdentifier data type that did not match any local whitelist.

21.6 Certification authority subscription protocol

21.6.1 Certification authority subscription introduction

The certification authority subscription is concerned with how the delegator maintains whitelist information by

subscribing to necessary information from relevant CAs. It is only relevant for delegators supporting whitelists for

constraint end entitities.

Before subscribing to maintenance information, the delegator needs know the exact configuration required for the end

entities it supports. The following information is necessary to establish:

a) The end-entity public-key certificates for the end entities for which whitelist support is to be provided.

b) For each end entities from a), the end-entity public-key certificates for the end entities to which

communications are possible.

c) The CA-certificates and trust anchor information necessary establish any necessary certification paths.

- 17 -

COM 17 – C xx – E

This Specification does not gives details on how a delegator obtains this information. It could be by local configuration

or by abstract of a centralized database.

The CASP encompasses a set of CMS exchanges as detailed in the following.

21.6.2 Certification authority subscription common parameters

Some components are common across different content types. The CASPcommonParms data type comprises these

parameters.

CASPcommonParms ::= SEQUENCE {

 version CASPversion DEFAULT v1,

 sequence CASPsequence,

 ... }

CASPversion ::= ENUMERATED { v1(1), v2(2), v3(3), ... }

CASPsequence ::= INTEGER (1..MAX)

The CASPcommonParms data type has the following parameters.

The version parameter shall hold the version of the CASP. The current version is version v1.

The sequence parameter shall hold a sequence number of a message being sent. The sequence number is used:

a) to allow detection replay of messages cause by an error or to pair caused by a hostile attacker.

b) to pair requests and responses.

c) to detect missing messages.

21.6.3 Public-key certificate subscription

certSubscribeReq CONTENT-TYPE ::= {

 CertSubscribeReq

 IDENTIFIED BY id-certSubscribeReq }

The delegator uses the certSubscribeReq content type to request a specific CA to supply status information about

public-key certificates issued by this CA and relevant for the whitelists supported by the delegator.

CertSubscribeReq ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

 certs SEQUENCE OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 ... }

The CertSubscribeReq data type specifies the actual content and has the following components:

a) The components of CASPcommonParms data type as specified in clause 22.6.2.

b) The certs component shall identify a list of public-key certificates for which, the delegator requests

information about status changes. It has the following subcomponents for each element:

– The subject subcomponent shall be the name of the entity for which the public-key certificate has

been issued.

– The serialNumber subcomponent shall be the serial number for the public-key certificate in

question.

The CA shall verify the validity of the request by checking:

a) as specified in clause 21.4;

b) each element of the certs component for validity, i.e., whether it identifies a public-key certificate issued

by the CA. If not, an unknownCert status code shall be returned in the corresponding element of the

response.

certSubscribeRsp CONTENT-TYPE ::= {

- 18 -

COM 17 – C xx – E

 CertSubscribeRsp

 IDENTIFIED BY id-certSubscribeRsp }

The CA shall use the certSubscribeRsp content type to report the outcome of the subscription request.

CertSubscribeRsp ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

 result CHOICE {

 certs [0] SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 cert Certificate,

 status CertStatus,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... },

 error [1] SEQUENCE {

 code CASP-error,

 ... },

 ... },

 ... }

CASP-CertStatusCode ::= ENUMERATED {

 noReason (1),

 unknownCert (2),

 ... }

The CertSubscribeRsp data type specifies the actual content and has the following components:

The CASPcommonParms data type as specified in clause 21.6.2.

The result parameter has following two alternatives:

The certs alternative shall be taken when at least one request for status information was successfully performed. It

shall include an element for each element in the corresponding request and in the same order. Each element has two

alternatives:

a) The ok alternative shall be taken when public-key certificate information was successfully retrieved. It

has the following components:

– the cert component shall hold the public-key certificate for the requested subject;

– the status component shall hold the status of the public-key certificate as defined in clause 11.3.

b) The not-ok alternative shall be taken when a corresponding public-key certificate was not identified:

– the no-reason status code shall be returned when no code is applicable;

– the unknownCert status code shall be selected when the corresponding element in the request did

not identify a public-key certificate issued by the CA.

The error alternative shall be taken if the evaluation of the request failed to a degree where no results could be

returned. The CASP-error data type is specified in clause 21.6.8.

21.6.4 Public-key certificate un-subscription

certUnsubscribeReq CONTENT-TYPE ::= {

 CertUnsubscribeReq

 IDENTIFIED BY {id-cmsct 10} }

The delegator uses the certUnsubscribeReq content type to request a specific CA to stop supplying status

information about public-key certificates issued by that CA.

CertUnsubscribeReq ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

 certs SEQUENCE OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

- 19 -

COM 17 – C xx – E

 ... }

The CertUnsubscribeReq data type specifies the actual content and has the following components:

a) The components of CASPcommonParms data type as specified in clause 22.6.2.

b) The certs component shall identify a list of public-key certificates for which, the delegator requests

stop for information about status changes. It has the following subcomponents for each public-key

certificate:

– The subject subcomponent shall be the name of the entity to which the public-key certificate has

been issued.

– The serialNumber subcomponent shall be the serial number for the public-key certificate in

question.

The CA shall verify the validity of the request by checking:

a) as specified in clause 21.4;

b) each element of the certs component for validity, i.e., whether it identifies a public-key certificate issued

by the CA. If not, an unknownCert status code shall be returned in the corresponding element of the

response.

certUnsubscribeRsp CONTENT-TYPE ::= {

 CertUnsubscribeRsp

 IDENTIFIED BY id-certUnsubscribeReq } }

The CA shall use the certUnsubscribeRsp content type to report the outcome of the un-subscription request.

CertUnsubscribeRsp ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

 result CHOICE {

 certs [0] SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... },

 error [1] SEQUENCE {

 code CASP-error,

 ... },

 ... },

 ... }

The CertSubscribeRsp data type specifies the actual content and has the following components:

The CASPcommonParms data type as specified in clause 21.6.2.

The result parameter has following two alternatives:

The certs alternative shall be taken when at least one request for status information was successfully stopped. It shall

include an element for each element in the corresponding request and in the same order. Each element has two

alternatives:

a) The ok alternative shall be taken when public-key certificate information was successfully retrieved. It

has the following components:

– the subject component shall hold the name of the subject to which the public-key certificate had

been issued;

– the serialNumber component shall hold the serial number for the public-key certificate.

b) The not-ok alternative shall be taken when a corresponding public-key certificate was not identified.

– the no-reason status code shall be returned when no other status code is applicable;

- 20 -

COM 17 – C xx – E

– the unknownCert status code shall be selected when the corresponding element in the request did

not identify a public-key certificate issued by the CA.

The error alternative shall be taken if the evaluation of the request failed to a degree where no results could be

returned. The CASP-error data type is specified in clause 21.6.8.

21.6.5 Public-key certificate replacements

certReplaceReq CONTENT-TYPE ::= {

 CertReplaceReq

 IDENTIFIED BY id-certReplaceReq }

The CA shall use the certReplacementReq content type to submit replaced public-key certificates to the delegator.

CertReplaceReq ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

 certs SEQUENCE OF SEQUENCE {

 old CertificateSerialNumber,

 new Certificate,

 ... },

 ... }

The CertReplacementReq data type specifies the actual content and has the following components:

a) The CASPcommonParms data type as specified in clause 21.6.2.

b) The certs component shall identify a list of public-key certificate replacements. It has the following

subcomponents for each public-key certificate:

– The old subcomponent shall hold the identification of the public-key certificate to be replaced.

– The new subcomponent shall hold the replacement public-key certificate.

The delegator shall verify the validity of the request by checking:

a) as specified in clause 21.4;

b) each element of the certs component for validity:

– whether the old subcomponent identifies a public-key certificate at the delegator and if not, an

unknownCert status code shall be returned in the corresponding element of the response;

b) each element of the certs component for validity, i.e., whether it identifies a public-key certificate issued

by the CA. If not, an unknownCert status code shall be returned in the corresponding element of the

response.

certReplaceRsp CONTENT-TYPE ::= {

 CertReplaceRsp

 IDENTIFIED BY id-certReplaceRsp }

The delegator shall use the certReplacementRsp content type to report the outcome of the subscription request.

CertReplaceRsp ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

 result CHOICE {

 certs [0] SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 issuer Name,

 serialNumber CertificateSerialNumber,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... },

 error [1] SEQUENCE {

 code CASP-error,

 ... },

 ... },

 ... }

- 21 -

COM 17 – C xx – E

The CertReplaceRsp data type specifies the actual content and has the following components:

The CASPcommonParms data type as specified in clause 21.6.2.

The result parameter has following two alternatives:

The certs alternative shall be taken when at least one request for status information was successfully stopped. It shall

include an element for each element in the corresponding request and in the same order. Each element has two

alternatives:

a) The ok alternative shall be taken when public-key certificate information was successfully retrieved. It

has the following components:

– the subject component shall hold the name of the subject to which the public-key certificate had

been issued;

– the serialNumber component shall hold the serial number for the public-key certificate.

b) The not-ok alternative shall be taken when a corresponding public-key certificate was not identified.

– the no-reason status code shall be returned when no code is applicable;

– the unknownCert status code shall be selected when the corresponding element in the request did

not identify a public-key certificate issued by the CA.

The error alternative shall be taken if the evaluation of the request failed to a degree where no results could be

returned. The CASP-error data type is specified in clause 21.6.8.

21.6.6 Public-key certificate updates

certUpdateReq CONTENT-TYPE ::= {

 CertUpdateReq

 IDENTIFIED BY id-certUpdateReq }

The CA shall use the certUpdateReq content type to submit to the delegator updated status information on public-key

certificates.

CertUpdateReq ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 certStatus CertStatus,

 ... },

 ... }

The CertUpdateReq data type specifies the actual content and has the following components:

a) The CASPcommonParms data type as specified in clause 21.6.2.

b) The certs component shall identify a list of updates to public-key certificate. It has the following

subcomponents for each element:

– The subject subcomponent shall hold the identification of the public-key certificate to be

replaced.

– The serialNumber subcomponent shall identify the public-key certificate or which new status

information is available.

– The certStatus shall hold the updated status information for the public-key certificate in

question.

The delegator shall verify the validity of the request by checking:

a) as specified in clause 21.4;

b) each element of the certs component for validity by checking–:

– whether the subject subcomponent identifies a new entity and if not, return an unknownSubject

error code;

- 22 -

COM 17 – C xx – E

– whether the serialNumber subcomponent identifies a known public-key certificate and if not,

return an unknownCert error code;

– whether certStatus subcomponent has valid value and if not, return an unknownCertStatus

error code.

certUpdateRsp CONTENT-TYPE ::= {

 CertUpdateRsp

 IDENTIFIED BY id-certUpdateRsp }

The delegator shall use the certUpdateRsp content type to report the outcome of the updates to status information on

public-key certificates.

CertUpdateRsp ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

 result CHOICE {

 certs [0] SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... },

 error [1] SEQUENCE {

 code CASP-error,

 ... },

 ... },

 ... }

The CertUpdateRsp data type specifies the actual content and has the following components:

The CASPcommonParms data type as specified in clause 21.6.2.

The result parameter has following two alternatives:

The certs alternative shall be taken when at least one update for status information was successfully updated. It shall

include an element for each element in the corresponding request and in the same order. Each element has two

alternatives:

a) The ok alternative shall be taken when the update to the public-key certificate information was

successfully processed. It has the following components:

– the subject component shall hold the name of the subject to which the public-key certificate had

been issued;

– the serialNumber component shall hold the serial number for the public-key certificate.

b) The not-ok alternative shall be taken when a corresponding public-key certificate was not identified.

– the no-reason status code shall be returned when no code is applicable;

– the unknownCert status code shall be selected when the corresponding element in the request did

not identify a public-key certificate issued by the CA.

The error alternative shall be taken if the evaluation of the request failed to a degree where no results could be

returned. The CASP-error data type is specified in clause 21.6.8.

21.6.7 Certification authority subscription reject

rejectCAsubscribe CONTENT-TYPE ::= {

 RejectCAsubscribe

 IDENTIFIED BY id-rejectCAsubscribe }

The rejectCAsubscribe content type is used by receiver of a response content to report problems with the response.

RejectCAsubscribe ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

- 23 -

COM 17 – C xx – E

 reason CASP-error,

 ... }

The RejectCAsubscribe data type specifies the actual content and has the following component:

The sequence parameter of the CASPcommonParms data type shall take the same value as in the response on which it

is reporting.

The CASP-error is specified in clause 21.5.8.

The delegator shall verify the validity of a received response by checking

a) as specified in clause 21.4.

21.6.8 Certification authority subscription error codes

CASP-error ::= ENUMERATED {

 noReason (0),

 unknownContentType (1),

 unsupportedCASPversion (2),

 missingContent (3),

 missingContentParameter (4),

 invalidContentParameter (5),

 sequenceError (6),

 unknownCertStatus (7),

 ... }

A value of the CASP-error data type indicates the result of an issued request.

a) the noReason value shall be selected when no other error code is applicable;

b) the unknownContentType value shall be selected if the content type is not known by the receiver;

c) the unsupportedCASPversion value shall be selected if a request or response content specified a

CASP version not supported;

d) the unsupportedContentVersion value shall be selected when a request or response includes an

unsupported content type;

e) the missingContent value shall be selected when the request or response did not include a content;

f) the missingContentParameter value shall be selected when a request or response does not includes a

mandatory parameter;

g) the invalidContentParameter value shall be selected when an unexpected parameter was included in a

request or response;

h) the sequenceError value shall be selected by when:

– a delegator or a CA receives a request content for the first time that did not have the sequence

parameter set to 1;

– a delegator or a CA receives a request content that did not have the sequence parameter set to one

more than for a previous request content in the same direction; or

– a delegator or a CA receives a response content with a sequence component value different from

the one in the corresponding request content;

- 24 -

COM 17 – C xx – E

Add new module to the end of Annex A:

-- A.4 - CMS content specifications module

CmsContentSpecifications {joint-iso-itu-t ds(5) module(1) cmsContentSpecifications(40) 8}

DEFINITIONS ::=

BEGIN

-- EXPORTS All

IMPORTS

 -- from Rec. ITU-T X.501 | ISO/IEC 9594-2

 authenticationFramework, id-cmsct, informationFramework, algorithmObjectIdentifiers

 FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 8}

 Name

 FROM InformationFramework informationFramework

 -- from Rec. ITU-T X.509 | ISO/IEC 9594-8

 ALGORITHM, AlgorithmIdentifier{}, Certificate, CertificateSerialNumber, CertWhitelist,

 CertStatus, ENCRYPTED-HASH{}, SIGNATURE{}, TBSCertWhitelist, WLIssuerKeyIdentifier,

 WLSubjectKeyIdentifier, Version

 FROM AuthenticationFramework authenticationFramework

 sha256, sha224, sha256WithRSAEncryptionAlgorithm

 FROM AlgorithmObjectIdentifiers algorithmObjectIdentifiers

 Attributes{},

 CMSVersion, id-signedData, RevocationInfoChoices, SignatureValue,

 SignedAttributes, UnsignedAttributes

 FROM CMS {itu-t recommendation(0) x(24) cms(894) module(0) version1(1)} ;

-- Signed data adapted

wlSignedData CONTENT-TYPE ::= {

 WLSignedData

 IDENTIFIED BY id-signedData }

WLSignedData ::= SEQUENCE {

 version CMSVersion (v3),

 digestAlgorithms SET (SIZE (1)) OF AlgorithmIdentifier {{WL-Hash-Algorithms}},

 encapContentInfo EncapsulatedContentInfo,

 certificates [0] IMPLICIT SET (SIZE (1..MAX)) OF Certificate OPTIONAL,

--crls [1] IMPLICIT RevocationInfoChoices OPTIONAL,

 signerInfos SignerInfos,

 ... }

EncapsulatedContentInfo ::= SEQUENCE {

 eContentType CONTENT-TYPE.&id({WLContentSet}),

 eContent [0] EXPLICIT OCTET STRING

 (CONTAINING CONTENT-TYPE.&Type({WLContentSet}{@eContentType})) OPTIONAL }

SignerInfos ::= SET (SIZE (1)) OF SignerInfo

SignerInfo ::= SEQUENCE {

 version CMSVersion,

 sid SignerIdentifier,

 digestAlgorithm AlgorithmIdentifier {{WL-Hash-Algorithms}},

 signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,

 signatureAlgorithm AlgorithmIdentifier {{WL-Signature-Algorithms}},

 signature SignatureValue,

 unsignedAttrs [1] IMPLICIT Attributes{{UnsignedAttributes}} }

SignerIdentifier ::= CHOICE {

- 25 -

COM 17 – C xx – E

--issuerAndSerialNumber IssuerAndSerialNumber,

subjectKeyIdentifier [0] SubjectKeyIdentifier,

--certHash [1] CertHash,

...}

SubjectKeyIdentifier ::= OCTET STRING

WL-Hash-Algorithms ALGORITHM ::= {sha256 | sha224, ...}

WL-Signature-Algorithms ALGORITHM ::= {sha256WithRSAEncryptionAlgorithm, ...}

-- CMS content types

CONTENT-TYPE ::= TYPE-IDENTIFIER

WLContentSet CONTENT-TYPE ::= {

 addWhitelistReq |

 addWhitelistRsp |

 replaceWhitelistReq |

 replaceWhitelistRsp |

 updateWhitelistReq |

 updateWhitelistRsp |

 deleteWhitelistReq |

 deleteWhitelistReq |

 rejectWhitelist |

 certSubscribeReq |

 certSubscribeRsp |

 certUnsubscribeReq |

 certUnsubscribeRsp |

 certReplaceReq |

 certReplaceRsp |

 certUpdateReq |

 certUpdateRsp |

 rejectCAsubscribe,

 ... }

-- Whitelist management

WLMPcommonParms ::= SEQUENCE {

 version WLMPversion DEFAULT v1,

 sequence WLMPsequence,

 ... }

WLMPversion ::= ENUMERATED { v1(1), v2(2), v3(3), ... }

WLMPsequence ::= INTEGER (1..MAX)

addWhitelistReq CONTENT-TYPE ::= {

 AddWhitelistReq

 IDENTIFIED BY id-addWhitelistReq }

AddWhitelistReq ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 certlist CertWhitelist,

 ... }

addWhitelistRsp CONTENT-TYPE ::= {

 AddWhitelistRsp

 IDENTIFIED BY id-addWhitelistRsp }

AddWhitelistRsp ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 result CHOICE {

 success [0] AddWhitelistOK,

 failure [1] AddWhitelistErr,

 ... },

 ... }

- 26 -

COM 17 – C xx – E

AddWhitelistOK ::= SEQUENCE {

 ok NULL,

 ... }

AddWhitelistErr ::= SEQUENCE {

 notOK WLMP-error,

 ... }

replaceWhitelistReq CONTENT-TYPE ::= {

 ReplaceWhitelistReq

 IDENTIFIED BY id-replaceWhitelistReq }

ReplaceWhitelistReq ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 old WhitelistIdentifier,

 new CertWhitelist,

 ... }

WhitelistIdentifier ::= ENCRYPTED-HASH {TBSCertWhitelist}

replaceWhitelistRsp CONTENT-TYPE ::= {

 ReplaceWhitelistRsp

 IDENTIFIED BY id-replaceWhitelistRsp }

ReplaceWhitelistRsp ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 result CHOICE {

 success [0] RepWhitelistOK,

 failure [1] RepWhitelistErr,

 ... },

 ... }

RepWhitelistOK ::= SEQUENCE {

 ok NULL,

 ... }

RepWhitelistErr ::= SEQUENCE {

 notOK WLMP-error,

 ... }

updateWhitelistReq CONTENT-TYPE ::= {

 UpdateWhitelistReq

 IDENTIFIED BY id-updateWhitelistReq }

UpdateWhitelistReq ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 wl-Id WhitelistIdentifier,

 status SEQUENCE (SIZE (1..MAX)) OF WhitelistStatus,

 signature WLsignature,

 ... }

WhitelistStatus ::= SEQUENCE {

 subjectId WLSubjectKeyIdentifier,

 update CertStatus,

 ... }

WLsignature ::= ENCRYPTED-HASH {TBSCertWhitelist}

updateWhitelistRsp CONTENT-TYPE ::= {

 UpdateWhitelistRsp

 IDENTIFIED BY id-updateWhitelistRsp }

UpdateWhitelistRsp ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 result CHOICE {

 success [0] UpdWhitelistOK,

- 27 -

COM 17 – C xx – E

 failure [1] UpdWhitelistErr,

 ... },

 ... }

UpdWhitelistOK ::= SEQUENCE {

 ok NULL,

 ... }

UpdWhitelistErr ::= SEQUENCE {

 notOK WLMP-error,

 ... }

deleteWhitelistReq CONTENT-TYPE ::= {

 DeleteWhitelistReq

 IDENTIFIED BY id-deleteWhitelistReq }

DeleteWhitelistReq ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 wl-Id WLIssuerKeyIdentifier,

 ... }

deleteWhitelistRsp CONTENT-TYPE ::= {

 DeleteWhitelistRsp

 IDENTIFIED BY id-deleteWhitelistRsp }

DeleteWhitelistRsp ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 result CHOICE {

 success [0] DelWhitelistOK,

 failure [1] DelWhitelistErr,

 ... },

 ... }

DelWhitelistOK ::= SEQUENCE {

 ok NULL,

 ... }

DelWhitelistErr ::= SEQUENCE {

 notOK WLMP-error,

 ... }

rejectWhitelist CONTENT-TYPE ::= {

 RejectWhitelist

 IDENTIFIED BY id-rejectWhitelist }

RejectWhitelist ::= SEQUENCE {

 COMPONENTS OF WLMPcommonParms,

 reason WLMP-error,

 ... }

WLMP-error ::= ENUMERATED {

 noReason (0),

 unknownContentType (1),

 unsupportedWLMPversion (2),

 missingContent (3),

 missingContentParameter (4),

 invalidContentParameter (5),

 sequenceError (6),

 invalidSignature (7),

 duplicateWL (8),

 missingWLparameter (9),

 invalidWLversion (10),

 constraintError (11),

 unknownCertStatus (12),

 unsupportedCriticalExtenssion (13),

 maxWLsExceeded (14),

 unknownCert (15),

- 28 -

COM 17 – C xx – E

 unknownWL (16),

 ... }

-- CA subscription

CASPcommonParms ::= SEQUENCE {

 version CASPversion DEFAULT v1,

 sequence CASPsequence,

 ... }

CASPversion ::= ENUMERATED { v1(1), v2(2), v3(3), ... }

CASPsequence ::= INTEGER (1..MAX)

certSubscribeReq CONTENT-TYPE ::= {

 CertSubscribeReq

 IDENTIFIED BY id-certSubscribeReq }

CertSubscribeReq ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 ... }

certSubscribeRsp CONTENT-TYPE ::= {

 CertSubscribeRsp

 IDENTIFIED BY id-certSubscribeRsp }

CertSubscribeRsp ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

 result CHOICE {

 certs [0] SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 cert Certificate,

 status CertStatus,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... },

 error [1] SEQUENCE {

 code CASP-error,

 ... },

 ... },

 ... }

CASP-CertStatusCode ::= ENUMERATED {

 noReason (1),

 unknownCert (2),

 ... }

certUnsubscribeReq CONTENT-TYPE ::= {

 CertUnsubscribeReq

 IDENTIFIED BY id-certUnsubscribeReq }

CertUnsubscribeReq ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 ... }

certUnsubscribeRsp CONTENT-TYPE ::= {

 CertUnsubscribeRsp

- 29 -

COM 17 – C xx – E

 IDENTIFIED BY id-certUnsubscribeRsp }

CertUnsubscribeRsp ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

 result CHOICE {

 certs [0] SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... },

 error [1] SEQUENCE {

 code CASP-error,

 ... },

 ... },

 ... }

certReplaceReq CONTENT-TYPE ::= {

 CertReplaceReq

 IDENTIFIED BY id-certReplaceReq }

CertReplaceReq ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 old CertificateSerialNumber,

 new Certificate,

 ... },

 ... }

certReplaceRsp CONTENT-TYPE ::= {

 CertReplaceRsp

 IDENTIFIED BY id-certReplaceRsp }

CertReplaceRsp ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

 result CHOICE {

 certs [0] SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 issuer Name,

 serialNumber CertificateSerialNumber,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... },

 error [1] SEQUENCE {

 code CASP-error,

 ... },

 ... },

 ... }

certUpdateReq CONTENT-TYPE ::= {

 CertUpdateReq

 IDENTIFIED BY id-certUpdateReq }

CertUpdateReq ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 certStatus CertStatus,

 ... },

 ... }

- 30 -

COM 17 – C xx – E

certUpdateRsp CONTENT-TYPE ::= {

 CertUpdateRsp

 IDENTIFIED BY id-certUpdateRsp }

CertUpdateRsp ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

 result CHOICE {

 certs [0] SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... },

 error [1] SEQUENCE {

 code CASP-error,

 ... },

 ... },

 ... }

rejectCAsubscribe CONTENT-TYPE ::= {

 RejectCAsubscribe

 IDENTIFIED BY id-rejectCAsubscribe }

RejectCAsubscribe ::= SEQUENCE {

 COMPONENTS OF CASPcommonParms,

 reason CASP-error,

 ... }

CASP-error ::= ENUMERATED {

 noReason (0),

 unknownContentType (1),

 unsupportedWLMPversion (2),

 missingContent (3),

 missingContentParameter (4),

 invalidContentParameter (5),

 sequenceError (6),

 unknownSubject (7),

 unknownCert (8),

 ... }

id-addWhitelistReq OBJECT IDENTIFIER ::= {id-cmsct 0}

id-addWhitelistRsp OBJECT IDENTIFIER ::= {id-cmsct 1}

id-replaceWhitelistReq OBJECT IDENTIFIER ::= {id-cmsct 2}

id-replaceWhitelistRsp OBJECT IDENTIFIER ::= {id-cmsct 3}

id-updateWhitelistReq OBJECT IDENTIFIER ::= {id-cmsct 4}

id-updateWhitelistRsp OBJECT IDENTIFIER ::= {id-cmsct 5}

id-deleteWhitelistReq OBJECT IDENTIFIER ::= {id-cmsct 6}

id-deleteWhitelistRsp OBJECT IDENTIFIER ::= {id-cmsct 7}

id-rejectWhitelist OBJECT IDENTIFIER ::= {id-cmsct 8}

id-certSubscribeReq OBJECT IDENTIFIER ::= {id-cmsct 9}

id-certSubscribeRsp OBJECT IDENTIFIER ::= {id-cmsct 10}

id-certUnsubscribeReq OBJECT IDENTIFIER ::= {id-cmsct 11}

id-certUnsubscribeRsp OBJECT IDENTIFIER ::= {id-cmsct 12}

id-certReplaceReq OBJECT IDENTIFIER ::= {id-cmsct 13}

id-certReplaceRsp OBJECT IDENTIFIER ::= {id-cmsct 14}

id-certUpdateReq OBJECT IDENTIFIER ::= {id-cmsct 15}

id-certUpdateRsp OBJECT IDENTIFIER ::= {id-cmsct 16}

id-rejectCAsubscribe OBJECT IDENTIFIER ::= {id-cmsct 17}

END -- CmsContentSpecifications

