Re: [Idnet] IDN dedicated session call for case

Haoyu song <haoyu.song@huawei.com> Thu, 10 August 2017 19:17 UTC

Return-Path: <haoyu.song@huawei.com>
X-Original-To: idnet@ietfa.amsl.com
Delivered-To: idnet@ietfa.amsl.com
Received: from localhost (localhost [127.0.0.1]) by ietfa.amsl.com (Postfix) with ESMTP id 09CE0132400 for <idnet@ietfa.amsl.com>; Thu, 10 Aug 2017 12:17:06 -0700 (PDT)
X-Virus-Scanned: amavisd-new at amsl.com
X-Spam-Flag: NO
X-Spam-Score: -4.219
X-Spam-Level:
X-Spam-Status: No, score=-4.219 tagged_above=-999 required=5 tests=[BAYES_00=-1.9, HTML_MESSAGE=0.001, RCVD_IN_DNSWL_MED=-2.3, RCVD_IN_MSPIKE_H3=-0.01, RCVD_IN_MSPIKE_WL=-0.01, SPF_PASS=-0.001, URIBL_BLOCKED=0.001] autolearn=ham autolearn_force=no
Received: from mail.ietf.org ([4.31.198.44]) by localhost (ietfa.amsl.com [127.0.0.1]) (amavisd-new, port 10024) with ESMTP id pnAuF8Yjyfdr for <idnet@ietfa.amsl.com>; Thu, 10 Aug 2017 12:17:03 -0700 (PDT)
Received: from lhrrgout.huawei.com (lhrrgout.huawei.com [194.213.3.17]) (using TLSv1 with cipher RC4-SHA (128/128 bits)) (No client certificate requested) by ietfa.amsl.com (Postfix) with ESMTPS id 5616213240D for <idnet@ietf.org>; Thu, 10 Aug 2017 12:17:01 -0700 (PDT)
Received: from 172.18.7.190 (EHLO lhreml704-cah.china.huawei.com) ([172.18.7.190]) by lhrrg02-dlp.huawei.com (MOS 4.3.7-GA FastPath queued) with ESMTP id DMJ86747; Thu, 10 Aug 2017 19:16:58 +0000 (GMT)
Received: from SJCEML701-CHM.china.huawei.com (10.208.112.40) by lhreml704-cah.china.huawei.com (10.201.108.45) with Microsoft SMTP Server (TLS) id 14.3.301.0; Thu, 10 Aug 2017 20:16:57 +0100
Received: from SJCEML703-CHM.china.huawei.com ([169.254.5.240]) by SJCEML701-CHM.china.huawei.com ([169.254.3.13]) with mapi id 14.03.0301.000; Thu, 10 Aug 2017 12:16:44 -0700
From: Haoyu song <haoyu.song@huawei.com>
To: =?utf-8?B?6rmA66+87ISd?= <mskim16@etri.re.kr>, =?utf-8?B?SsOpcsO0bWUgRnJhbsOnb2lz?= <jerome.francois@inria.fr>, "Albert Cabellos" <albert.cabellos@gmail.com>, yanshen <yanshen@huawei.com>
CC: "idnet@ietf.org" <idnet@ietf.org>
Thread-Topic: [Idnet] IDN dedicated session call for case
Thread-Index: AdMLcu+vuWBrdNuZQwG6l2oQPpJcKAEydxKAABTa8AAAS6IfgAATZd3g
Date: Thu, 10 Aug 2017 19:16:42 +0000
Message-ID: <78A2745BE9B57D4F9D27F86655EB87F925990540@SJCEML703-CHM.china.huawei.com>
References: <6AE399511121AB42A34ACEF7BF25B4D297A34A@DGGEMM505-MBS.china.huawei.com> <CAGE_QeztLKUF55OjKcsxqW=MUMAX60vR+6935-n+nnKPRVX2zg@mail.gmail.com>, <7e6d507a-e8bf-b334-e394-6dc08b4dc3b1@inria.fr> <5BC916BD50F92F45870ABA46212CB29C019C7592@SMTP1.etri.info>
In-Reply-To: <5BC916BD50F92F45870ABA46212CB29C019C7592@SMTP1.etri.info>
Accept-Language: en-US
Content-Language: en-US
X-MS-Has-Attach:
X-MS-TNEF-Correlator:
x-originating-ip: [10.213.49.222]
Content-Type: multipart/alternative; boundary="_000_78A2745BE9B57D4F9D27F86655EB87F925990540SJCEML703CHMchi_"
MIME-Version: 1.0
X-CFilter-Loop: Reflected
X-Mirapoint-Virus-RAPID-Raw: score=unknown(0), refid=str=0001.0A020206.598CB12B.018E, ss=1, re=0.000, recu=0.000, reip=0.000, cl=1, cld=1, fgs=0, ip=169.254.5.240, so=2013-06-18 04:22:30, dmn=2013-03-21 17:37:32
X-Mirapoint-Loop-Id: fd7621320db95814aa6d78c44afb19fc
Archived-At: <https://mailarchive.ietf.org/arch/msg/idnet/arbmYXiHTAlav8PbnfutKtWZPRw>
Subject: Re: [Idnet] IDN dedicated session call for case
X-BeenThere: idnet@ietf.org
X-Mailman-Version: 2.1.22
Precedence: list
List-Id: "The IDNet \(Intelligence-Defined Network\) " <idnet.ietf.org>
List-Unsubscribe: <https://www.ietf.org/mailman/options/idnet>, <mailto:idnet-request@ietf.org?subject=unsubscribe>
List-Archive: <https://mailarchive.ietf.org/arch/browse/idnet/>
List-Post: <mailto:idnet@ietf.org>
List-Help: <mailto:idnet-request@ietf.org?subject=help>
List-Subscribe: <https://www.ietf.org/mailman/listinfo/idnet>, <mailto:idnet-request@ietf.org?subject=subscribe>
X-List-Received-Date: Thu, 10 Aug 2017 19:17:06 -0000

Hi Min-Suk,

Sorry I’m confused by this use-case. What do you want to classify exactly? Or in other words, what kind of classification needs (or has to use) ML to solve? Without clear answer to these questions, this is hardly to be seen as a use-case.

Best,
Haoyu
From: IDNET [mailto:idnet-bounces@ietf.org] On Behalf Of ???
Sent: Wednesday, August 09, 2017 7:55 PM
To: Jérôme François <jerome.francois@inria.fr>fr>; Albert Cabellos <albert.cabellos@gmail.com>om>; yanshen <yanshen@huawei.com>
Cc: idnet@ietf.org
Subject: Re: [Idnet] IDN dedicated session call for case


HI,



We have an use-case for this:



Use case n+4: Real time traffic classfication using deep learning
Description: continuously collect packet data, then applying learning process for traffic classification with generating application using deep learning models such as CNN (convolutional neural network) and RNN (recurrent neural network). Data-set to apply into the models are generated by propecessing with features of information from flow in packet data.



process: 1. collect packet data in real-time, 2. preprocessing data-set for deep learning models, 3. Training model using deep learning (CNN & RNN), 4. On-line data learning & classifying 5. Monitoring and analyzing traffic in the web



Data Format: Time : [Start, End, Unit, Number of Value, Sampling Period]
                            Position: [Device ID, Port ID]
                            Direction: IN / OUT
                            Flow level metric: packet & flow size, number of packet(RNN), payload parsing


 Message: Request: ask for the data
                          Reply: Data
                          Notice: For notification or others
                          Policy: Control policy



Regards,


Min-Suk Kim

Senior Researcher / Ph.D.










________________________________
보낸 사람 : "Jérôme François" <jerome.francois@inria.fr<mailto:jerome.francois@inria.fr>>
보낸 날짜 : 2017-08-08 23:49:47 ( +09:00 )
받는 사람 : Albert Cabellos <albert.cabellos@gmail.com<mailto:albert.cabellos@gmail.com>>, yanshen <yanshen@huawei.com<mailto:yanshen@huawei.com>>
참조 : idnet@ietf.org<mailto:idnet@ietf.org> <idnet@ietf.org<mailto:idnet@ietf.org>>
제목 : Re: [Idnet] IDN dedicated session call for case


Hi all,




Here is another use case about traffic classification.




Use case N+3: (encrypted) traffic classification




    Description: collect flow-level traffic metrics such as protocol information but also meta metrics such as distribution of packet sizes, inter-arrival times... Then use such information to label the trafic with the underlying application assuming that the granularity of classification may vary (type of application, exact application name, version...)


    Process: 1. collect packet information 2. flow reassembly (using directly flow format such as IPFIX might be possible but depends on the type of traffic, e.g. extracting the TLS application data is useful for encrypted traffic) 3. Collect application specific information (useful when targeting a single type of application) = out of network information 4. train the model 5. Online or offline testing 4. Apply application level policies.


    Data Format:    Time : [Start, End, Unit, Number of Value, Sampling Period]


                                Position: [Device ID, Port ID]


                                Direction: IN / OUT


                                Flow level metric: packet size distributions, number of packets, inter-arrival time distribution,


                                 (+ application specific knowledge : payload parsing)




    Message :       Request: ask for the data


                           Reply: Data


                           Notice: For notification or others


                           Policy: Control policy






Best regards,


jerome





Le 08/08/2017 à 06:52, Albert Cabellos a écrit :


Hi all


Here´s another use-case:


Use case N+2: QoE


style="font-size: 12px;">        Description: Collect low-level metrics (SNR, latency, jitter, losses, etc) and measure QoE. Then use ML to understand what is the relation between satisfactory QoE and the low-level metrics. As an example learn that when delay>N then QoE is degraded, but when M<delay<N then QoE is satisfactory for the customers (please note that QoE cannot be measured directly over your network). This is useful to understand how the network must be operated to provide satisfactory QoE.


style="font-size: 12px;">        Process: 1. Low-level data collection and QoE measurement ; 2. Training Model (input low-level metrics, output QoE); 3. Real-time data capture and input; 4. Predict QoE; 5. Operate network to meet target QoE requirement, go to 3.


style="font-size: 12px;">        Data Format:    Time : [Start, End, Unit, Number of Value, Sampling Period]


style="font-size: 12px;">                                Position: [Device ID, Port ID]


style="font-size: 12px;">                                Direction: IN / OUT


style="font-size: 12px;">                                Low-level metric : SNR, Delay, Jitter, queue-size, etc


style="font-size: 12px;">        Message :       Request: ask for the data


style="font-size: 12px;">                                Reply: Data


style="font-size: 12px;">                                Notice: For notification or others


style="font-size: 12px;">                                Policy: Control policy




Kind regards


Albert


On Wed, Aug 2, 2017 at 7:12 PM, yanshen <yanshen@huawei.com<mailto:yanshen@huawei.com>> wrote:


Dear all,




Since we plan to organize a dedicated session in NMRG, IETF100, for applying AI into network management (NM), I’d try to list some Use Cases and propose a roadmap and ToC before Nov.




These might be rough. You are welcome to refine them and propose your focused use cases or ideas.




Use case 1: Traffic Prediction


        Description: Collect the history traffic data and external data which may influence the traffic. Predict the traffic in short/long/specific term. Avoid the congestion or risk in previously.


        Process: 1. Data collection (e.g. traffic sample of physical/logical port ); 2. Training Model; 3. Real-time data capture and input; 4. Predication output; 5. Fix error and go back to 3.


        Data Format:    Time : [Start, End, Unit, Number of Value, Sampling Period]


                                Position: [Device ID, Port ID]


                                Direction: IN / OUT


                                Route : [R1, R2, ..., RN]  (might be useful for some scenarios)


                                Service : [Service ID, Priority, ...]  (Not clear how to use it but seems useful)


                                Traffic: [T0, T1, T2, ..., TN]


        Message :       Request: ask for the data


                                Reply: Data


                                Notice: For notification or others


                                Policy: Control policy




Use case 2: QoS Management


        Description: Use multiple paths to distribute the traffic flows. Adjust the percentages. Avoid congestion and ensure QoS.


        Process: 1. Data capture (e.g. traffic sample of physical/logical port ); 2. Training Model; 3. Real-time data capture and input; 4. Output percentages; 5. Fix error and go back to 3.


        Data Format:    Time : [Timestamp, Value type (Delay/Packet Loss/...), Unit, Number of Value, Sampling Period]


                                Position: [Link ID, Device ID]


                                Value: [V0, V1, V2, ..., VN]


        Message :       Request: ask for the data


                                Reply: Data


                                Notice: For notification or others


                                Policy: Control policy




Use case N: Waiting for your Ideas




Also I suggest a roadmap before Nov if possible.




### Roadmap ###


Aug. : Collecting the use cases (related with NM). Rough thoughts and requirements


Sep. : Refining the cases and abstract the common elements


Oct. : Deeply analysis. Especially on Data Format, control flow, or other key points


Nov.: F2F discussions on IETF100


### Roadmap End ###




A rough ToC is listed in following. We may take it as a scope before Nov. Hope that the content could become the draft of draft.




###Table of Content###


1. Gap and Requirement Analysis


        1.1 Network Management requirement


        1.2 TBD


2. Use Cases


        2.1 Traffic Prediction


        2.2 QoS Management


        3.3 TBD


3. Data Focus


        3.1 Data attribute


        3.2 Data format


        3.3 TBD


4. Aims


        4.1 Benchmarking Framework


        4.2 TBD


###ToC End###






Yansen




_______________________________________________


IDNET mailing list


IDNET@ietf.org<mailto:IDNET@ietf.org>


https://www.ietf.org/mailman/listinfo/idnet









_______________________________________________

IDNET mailing list

IDNET@ietf.org<mailto:IDNET@ietf.org>

https://www.ietf.org/mailman/listinfo/idnet